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Abstract
This paper is concerned with the problem of single-channel
speaker separation and exploits visual speech information to aid
the separation process. Audio from a mixture of speakers is re-
ceived from a single microphone and to supplement this, video
from each speaker in the mixture is also captured. The visual
features are used to create a time-frequency binary mask that
identifies regions where the target speaker dominates. These re-
gions are retained and form the estimate of the target speaker’s
speech. Experimental results compare the visually-derived bi-
nary masks with ideal binary masks which shows a useful level
of accuracy. The effectiveness of the visually-derived binary
mask for speaker separation is then evaluated through estimates
of speech quality and speech intelligibility and shows substan-
tial gains over the original mixture.
Index Terms: Speaker separation, binary masks, visual fea-
tures, audio-visual correlation

1. Introduction
This work examines whether the problem of speaker separation
can be achieved through the use of visual speech information.
When we as humans listen to audio sounds that comprise a mix-
ture of different speakers we are very good at extracting a target
speaker from various interfering speakers. Having two ears im-
proves the situation but we also exploit other cues such as ob-
serving visual speech information from the speakers. This work
considers the scenario of a single audio channel and examines
whether visual speech information can provide information to
allow extraction of a target speaker from this mixture of sounds.

Traditional audio-only speaker separation is well estab-
lished when multiple microphones are present. Techniques
such as deconvolution and blind source separation (BSS) make
assumptions that the signals in the mixture are independent
and exploit the input signals to extract the individual audio
sources [1]. The problem of speaker separation from just a sin-
gle audio channel is substantially more difficult. In this situation
it is necessary to employ some knowledge of the way humans
perceive speech and to make various assumptions about the
speech signals. Most methods exploit the masking property of
human speech perception and aim to identify and extract time-
frequency regions of the speech mixture that are dominated by
the target speaker and mask out other regions. These masks
are known as binary masks and each time-frequency compo-
nent is set to either one or zero depending on whether the re-
gion is dominated by the target speaker or is to be masked. The
challenge is to estimate accurately the mask and identify time-
frequency components to be retained and those which are to be
masked. Various approaches have been employed to find the
mask and these typically operate by grouping time-frequency
regions according to various criteria. One of the most effec-
tive is computational auditory scene analysis (CASA) which

groups regions perceptually, making use of cues such as har-
monicity, common spatial location, amplitude and frequency
modulation and onset and offset times [1]. Alternative ap-
proaches have used statistical approaches whereby dependen-
cies between time-frequency regions are established and used
to form the mask [2, 3]. An extension of the binary mask is the
soft mask, where instead of a binary decision as to whether a
time-frequency component is masked a probability of masking
is computed which thereby allows some uncertainty to exist in
the mask [2, 4].

This work proposes using visual speech information from
each speaker in the mixture to estimate the binary mask. Signifi-
cant correlation exists between audio and visual speech features
extracted from a speaker and this can be exploited to enable au-
dio features to be estimated from visual features [5, 6]. Given
audio feature estimates for the speakers in the mixture an es-
timate of the binary mask can be made from which the target
speaker can be extracted. The proposed system uses a single
microphone as the audio input which receives the mixture of
speech from the speakers. Information to enable separation of
speakers is provided by visual speech features that are extracted
from the mouth region of each speaker in the mixture. Several
example scenarios can be envisaged with such a system. A first
scenario uses a single microphone and a single camera, pos-
sibly located together, to extract audio and video. The video
captured by the camera contains all the speakers present in the
mixture, from which each speaker would need to be identified
and tracked, such as in [7, 8]. Visual features for each speaker
can then be extracted. A second scenario again uses a single
microphone, but now uses a series of individual cameras with
each capturing video from each speaker in the mixture. These
cameras could again be located centrally and be positioned to
capture video at positions where speakers would be located. In
comparison to the above scenarios, in audio-only speaker sepa-
ration a ‘zooming in’ to a speaker is only possible when multi-
ple microphones are distributed within the environment which
is a more complex configuration.

Other work on speaker separation has also exploited visual
speech information from a target speaker’s mouth region. For
example in a multiple audio channel speaker separation system
visual speech information has been used to supplement audio-
based methods of extracting a target speaker [9, 10]. In [10]
a target speaker is first extracted from a speech mixture using
audio BSS. Visual information from speakers is then used to
address permutation and scaling ambiguities present after BSS.
The method still uses multiple audio channels but supplements
this information with visual information that increases the qual-
ity of the extracted target speech. Visual speech has also been
used to aid single channel speaker separation [11] by improving
the accuracy of hidden Markov model (HMM) decoding of in-
put speech signals, with the HMMs providing statistics on the
speech to be separated.



The proposed method of visually-derived binary mask es-
timation for speaker separation is described in Section 2. To
compute the mask requires audio estimates of the target and
competing speakers and these are estimated from visual speech
features which is discussed in Section 3. Experimental results
are presented in Section 4 which first examine the accuracy of
the visually-derived binary mask and then evaluate the extracted
target speaker’s speech in terms of speech quality and intelligi-
bility.

2. Visually-derived binary masks
Speaker separation using binary masks involves first the esti-
mation of a time-frequency mask where each component sig-
nifies whether that time-frequency component is dominated by
either the target speaker or interfering speakers. Areas where
the binary mask indicates the region is target-dominated are re-
tained, while regions that are dominated by interfering speakers
are masked and discarded. This work exploits audio-visual cor-
relation and proposes a method of estimating the binary mask
using visual speech information.

2.1. Mixing Model

In the time-domain it is assumed that a mixed signal, x(n), is
made from the addition of speech from a target speaker and an
interfering speaker, s1(n) and s2(n), where

x(n) = s1(n) + s2(n) (1)

In the power spectrum, assuming the signals are uncorrelated
and the analysis window sufficiently long, then

|X(f)|2 = |S1(f)|2 + |S2(f)|2 (2)

where |X(f)|2, |S1(f)|2 and |S2(f)|2 are the power spectra of
the mixture and the two speech signals respectively, where f
represents the spectral bin.

2.2. Estimation of binary mask

The proposal in this work is to use information from visual
speech features taken from both the target speaker and interfer-
ing speaker to estimate the binary mask. Analysis of audio and
visual speech features has shown that significant correlation ex-
ists between the two, enabling audio speech features to be esti-
mated from visual speech features [6]. In particular, broad spec-
tral envelope features such as log filterbank or MFCC features
can be estimated from 2D-DCT or Active Appearance Model
(AAM)visual features with good accuracy. An advantage of
such a visually-derived estimate is that the resulting audio fea-
tures are free from any interference from other speakers or any
other sound sources. Estimation of fine spectral detail, such as
harmonic frequencies, is not possible from the visual features as
they do not contain source information but a smoothed spectral
representation is attainable.

From the target speaker and interfering speaker visual fea-
tures, v1(t) and v2(t) are extracted at each time frame, t. From
the two visual features, estimates of audio features, â1(t) and
â2(t), are made using MAP estimation

â1(t) = MAP (v1(t))

â2(t) = MAP (v2(t)) (3)

where the estimation is shown by the function MAP (). The
process of estimating audio features from visual features is ex-
plained in Section 3. In this work the visual features are formed

from a 2D-DCT of a 100x100 pixel region centered around
each speaker’s mouth, while the audio features are from a D-
dimensional log filterbank.

To compute the binary mask, the D-dimensional log fil-
terbank vector must be interpolated to the dimensionality of
the power spectral features which in this work is F=128, and
D < 128. This is achieved by cubic spline interpolation to
give time-frequency spectral representations for the target and
interfering speakers, A1(t, f) and A2(t, f)

A1(t, f) = interp(â1(t))

A2(t, f) = interp(â2(t)) 1 ≤ t ≤ T (4)

where T is the number of time frames in the utterance. The
estimate of the binary mask, m̂(t, f), is now computed in the
normal way whereby time-frequency regions are retained when
the target speaker’s energy is greater than that of the interfering
speaker, or in other words when the local signal-to-noise ratio
(SNR) is greater than 0dB

m̂(t, f) =

{
1 A1(t, f) ≥ A2(t, f)
0 A1(t, f)<A2(t, f)

(5)

This is based on the log-max assumption which assumes that in
any particular frequency band at any time, the energy contribu-
tion of one speaker in the mixture is dominant and masks the
other speakers in the mixture [4].

2.3. Time-domain reconstruction

From the time-frequency representation of the mixed signal
magnitude spectrum, |X(t, f)|, an estimate of the magnitude
spectrum of the target speaker, |Ŝ1(t, f)|, can be made using
the estimated binary mask

|Ŝ1(t, f)| = m̂(t, f)|X(t, f)| 1 ≤ t ≤ T, 1 ≤ f ≤ F
(6)

The sequence of magnitude spectral frames of the extracted tar-
get speech must now be transformed into a continuous time-
domain speech signal, ŝ1(n). This is achieved by first com-
bining each magnitude spectrum estimate with the phase of the
original mixed speech signal, ∠X(t, f), and applying an in-
verse Fourier transform to obtain a short-duration frame of time-
domain samples. These frames are then overlapped by 50%
and added together to create the estimate of the target speaker’s
speech.

3. Estimation of audio features from video
The relatively high level of correlation between audio and vi-
sual features has led to effective methods of estimating audio
features from visual features within a MAP framework [6]. The
process involves first training a GMM to model the joint density
of audio and visual speech features. MAP estimation can then
be applied to estimate audio features from visual features.

3.1. Audio and visual features

For visual features to provide audio information it is necessary
to find audio-visual features that are correlated. Several studies
have shown that high levels of correlation exist between audio
and visual features extracted from a speaker [5, 6]. For mel-
filterbank audio features and 2D-DCT visual features, audio-
visual correlation of R=0.8 is reported. This correlation has
subsequently been exploited to enable visual speech features to



aid in both robust speech recognition and audio speech enhance-
ment [12, 6]. As such, based on [6], a D-channel mel-scale fil-
terbank is used as the audio feature. These are extracted from
20ms duration frames of audio at 10ms intervals in accordance
with the ETSI XAFE standard [13]. Visual features, vt, are
extracted from 100x100 pixel regions centered on a speaker’s
mouth. A 2D-DCT is applied and the first 20 coefficients re-
tained as the visual vector. The dimensionality of the filterbank,
D, is an important parameter in maximising the accuracy of
mask estimation and is examined further in Section 4.2.

3.2. MAP estimation of audio features

MAP estimation begins by creating a GMM to model the joint
density of audio and visual feature vectors for a speaker. A
joint feature vector, z1(t), is first created by augmenting audio
and visual vectors from speaker 1

z1(t) = [a1(t), v1(t)] (7)

From a training set of joint feature vectors, expectation max-
imisation (EM) clustering is applied to create a GMM, Φ1, that
models the joint density of the audio and visual features for
speaker 1

Φ1 =

C∑
c=1

αc
1φ

c
1 =

C∑
c=1

αc
1 N (z1;µc

1,Σ
c
1) (8)

The GMM comprises C clusters, with the cth cluster repre-
sented by prior probability, αc

1, Gaussian probability density
function, φc

1 with mean vector, µc
1, and covariance matrix, Σc

1

Given the model of the joint density of audio-visual vectors,
Φ1, a MAP estimate of the audio vector for the target speaker,
â1(t), can be made from a visual vector extracted from speaker
1’s mouth region, v1(t)

â1(t) = arg max
a

(p (a|v1,t,Φ1)) (9)

Similarly, to estimate filterbank vectors for speaker 2, a GMM,
Φ2, is trained on joint feature vectors extracted from speaker 2,
i.e.

z2(t) = [a2(t), v2(t)] (10)

This GMM is used in equation (9), along with visual vectors
extracted from speaker 2, v2(t), to give an estimate of the au-
dio vector for speaker 2, â2,t. At present the requirement of
speaker-specific GMMs is necessary to attain good audio fea-
ture estimates as speaker variability is high for visual features
[14].

4. Experimental results
An evaluation of the effectiveness of the visually-derived bi-
nary mask for speaker separation is made in this section. The
audio-visual speech databases used for evaluation are described
first. Second, an analysis of the accuracy of the visually-
derived binary mask is presented. Finally, experimental results
are presented on the quality and the intelligibility of the target
speaker’s speech following visually-derived speaker separation.

4.1. Audio-visual databases

Two audio-visual speech databases are used in the experiments
– one for the target speaker and one for the interfering speaker.
One database is extracted from a UK male speaker and the other
from a UK female speaker [15, 16], with both comprising a set

of 279 phonetically rich sentences that were typically 3 to 5
seconds in duration. For both speakers the first 200 utterances
were used for training with the remaining 79 utterances used
for testing. The audio in both databases was downsampled to
a sampling frequency of 8kHz and filterbank vectors extracted
at 10ms intervals. The video was upsampled to 100 frames per
second to match the audio frame rate. For both speakers, vi-
sual features were captured from the front of the face using a
100×100 pixel region centered on the speaker’s mouth.

The experimental scenario investigated is of two speak-
ers talking simultaneously and being located close together in
space, with the male speaker the target and the female the
interfering speaker. Of the two example scenarios discussed
in Section 1, this corresponds to the second with video from
each speaker captured with separate cameras. The mixed au-
dio signal was created by taking speech from the target speaker
and adding it to scaled speech from the interfering speaker,
where the scaling was adjusted to create a desired signal-to-
interference ratio (SIR).

For evaluation purposes, each of the 79 test utterances from
the male speaker were mixed with a randomly selected utter-
ance from the female speaker with the proviso that no mixture
used the same two sentences. Unreported experiments were also
carried out with the speakers reversed with no significant differ-
ences in performance observed. MAP estimation of audio fea-
tures from visual features used speaker-dependent GMMs that
were trained on each speaker.

4.2. Mask accuracy

The accuracy of the visually-derived binary mask is evaluated
by comparing with the ideal binary mask that is computed from
the actual energy levels in the target and interfering speakers at
each time-frequency point. The metric used for evaluation is
the percentage of components in the visually-derived mask that
were estimated correctly. The experiments examine the effect of
different numbers of filterbank channels (from D = 2 to D =
100) and at at SIRs from -10dB to +20dB, which are reported in
Table 1. The results show that mask accuracy improves slightly
with increasing numbers of filterbank channels but this increase
varies only by at most around 4%.

To investigate further the effect of varying the number of
filterbank channels, an artificial test was carried out that took
the ideal binary masks calculated from 2, 6, 12, 18, 23, 27, 30,
50 and 100-dimensional ideal filterbank features interpolated to
128 dimensions. Table 2 compares the accuracy of these filtered
binary masks to the visually-derived binary masks extracted at
an SIR of 0dB. The results for the filtered ideal masks show
that the process of filterbank quantisation introduces a substan-
tial reduction in mask accuracy – with quantisation to 2 chan-
nels, accuracy is reduced by almost 18%. However, accuracy
of the filtered ideal mask does recover rapidly as more filter-
bank channels are introduced. In comparison, recovery of the
visually-derived binary mask is much less – by only 3% in com-
parison to 11% when moving from 2 to 100 channels. This sug-
gests that there is a fairly low limit on the amount of spectral
detail that can be extracted from visual features.

Figure 1 provides further insight into mask estimation and
shows the ideal binary mask and then binary masks computed
for 2, 23 and 50 channel filterbanks, with each showing the ideal
and visually-derived masks. White regions indicate regions that
are dominated by the target speaker and are to be retained. Ex-
amination reveals that at low numbers of channels the entire
time frame is often classed as either target or interfering speaker



due to the lack of spectral detail available. As the number of
channels increases, spectral detail improves and so more fre-
quency discrimination is possible. This is certainly evident in
the filtered ideal masks, but less discrimination is available from
the visually-derived masks as fine spectral detail is not present
in the visual features.

SIR -10dB -5dB 0dB 5dB 10dB 20dB
D=2 71.57 66.27 67.07 70.37 74.53 82.79
D=6 72.06 67.49 67.60 69.86 74.49 83.20
D=12 73.05 67.43 67.74 70.08 73.95 83.20
D=18 73.76 68.33 67.96 70.39 74.13 83.14
D=23 72.03 66.88 68.30 69.32 74.03 82.04
D=27 73.21 68.44 68.42 70.96 74.80 83.23
D=30 73.19 68.38 68.32 71.54 75.57 83.04
D=50 72.95 68.66 68.96 71.93 75.30 83.09
D=100 74.38 69.70 69.95 72.59 76.13 83.61

Table 1: Visually-derived mask estimation accuracy (%) at SIRs
from -10dB to +20dB and filterbank sizes from 2 to 100 chan-
nels.

Number of channels Visually-derived Filtered ideal
D=2 67.07 82.01
D=6 67.60 84.94
D=12 67.74 86.97
D=18 67.96 87.70
D=23 68.30 88.62
D=27 68.42 88.84
D=30 68.32 88.94
D=50 68.96 91.06
D=100 69.95 93.36

Table 2: Comparison of visually-derived binary mask and ideal
binary mask subject to filterbank quantisation, for filterbank
sizes from 2 to 100 channels at an SIR of 0dB.

4.3. Speech quality

To estimate the quality of the target speaker’s speech, the signal-
to-interference ratio (SIR) is used as defined [17]

SIR = 10 log10

‖starget‖2

‖einterf‖2
(11)

where starget and einterf refer to speech from the target
speaker and interfering speaker respectively. Tests used the set
of 79 mixed sentences and were carried out at initial SIRs of -
10dB, -5dB, 0dB, 5dB, 10dB and 20dB. The visually-derived
binary masks were applied to the mixtures and the resulting
SIRs computed using the BSS toolbox [18] and the results are
shown in Table 3. The results show that the visually-derived bi-
nary masks are able to extract the target speaker from the mix-
ture and thereby increase the SIRs. Largest gains in SIR occur
at the lower input SIRs. The results also show that the num-
ber of filterbank channels does not have a large effect on the
output SIR which is supported by the findings in Table 1 that
showed little differences in mask accuracy for varying number
of channels.

The effectiveness of the speaker separation is illustrated in
Figure 2 which shows spectrograms of an utterance from the
target speaker (Figure 2a), the interfering speaker (Figure 2b),

Figure 1: Binary masks: a) ideal, b) 2-channel ideal, c) 2-
channel visually-derived, d) 23-channel ideal, e) 23-channel
visually-derived, f) 50-channel ideal, g) 50-channel visually-
derived.



Input SIR -10dB -5dB 0dB 5dB 10dB 20dB
D=2 0.06 2.19 4.82 8.07 11.73 20.36
D=6 -0.11 1.97 5.03 8.13 11.91 20.19
D=12 -0.78 1.16 4.47 7.81 11.53 19.95
D=18 -0.54 1.49 4.29 7.68 11.41 19.82
D=23 -0.19 1.77 3.50 8.03 11.91 19.86
D=27 -2.46 -0.03 3.41 7.38 10.94 19.29
D=30 -2.30 -0.26 3.11 7.41 11.34 19.43
D=50 -3.32 -1.02 2.70 6.75 10.83 19.48
D=100 0.45 1.44 4.05 7.16 11.10 20.19

Table 3: Comparison of input and output SIRs for filterbank
sizes from 2 to 100 channels.

the resulting mixture at an SIR of 0dB (Figure 2c) and finally
the results of visually-derived binary masking using 2, 23 and
50 filterbank channels. The results show many of the attributes
of the target speaker to have been successfully extracted from
the mixture.

4.4. Speech intelligibility

This section investigates the effectiveness of speaker separation
using the visually-derived binary mask in terms of speech in-
telligibility. In this work an estimate of speech intelligibility
is made using an unconstrained monophone speech recogniser.
This comprised a set of 44 monophone HMMs that were ar-
ranged in a fully connected grammar. From the masked time-
domain estimates of the target speaker’s speech, MFCC vec-
tors were extracted in accordance with the ETSI XAFE stan-
dard [13]. Table 4 shows recognition accuracy for the target
speaker’s speech extracted using from 2 to 100 channel filter-
banks and at SIRs from -10dB to +20dB. The table also shows
baseline performance when no speaker separation (NSS) is ap-
plied. Unconstrained monophone accuracy for the original tar-
get speaker in clean conditions is 49.22%. These speech recog-
nition tests are included to provide an indication of intelligi-
bility and not as a proposed method of speaker separation for
speech recognition. For this task, effective methods have been
developed that operate on the features themselves without re-
constructing an audio signal [19].

SIR -10dB -5dB 0dB 5dB 10dB 20dB
NSS -7.34 -7.73 -3.30 2.71 8.88 28.84
FB=2 6.81 8.82 11.83 15.10 21.50 35.00
FB=6 7.17 10.79 12.42 15.07 21.68 33.88
FB=12 7.99 9.97 13.18 16.18 21.82 34.95
FB=18 8.20 10.23 13.71 17.16 23.83 35.06
FB=23 9.70 12.53 14.57 18.67 23.27 35.06
FB=27 9.73 12.33 15.92 18.87 24.59 35.03
FB=30 9.35 13.24 16.16 19.43 24.30 34.97
FB=50 10.97 13.74 16.90 18.76 24.39 35.21
FB=100 10.91 14.77 16.54 17.16 22.56 35.39

Table 4: Target speaker monophone recognition accuracy (%)
at SIRs from -10dB to +20dB for filterbank sizes from 2 to 100
channels.

With no speaker separation (NSS), recognition accuracy
falls significantly as SIRs reduce with a sizeable drop observed
below 20dB. Applying speaker separation using the visually-
derived binary mask improves recognition accuracy for the tar-

Figure 2: Spectrograms showing: a) target speaker saying
‘Higher oil prices may amaze those thinking of investing their
money’, b) interfering speaker saying ‘Zulu warriors have sure
ideas when watching a video yeti eat pure nectarines’ c) tar-
get speaker mixed with interfering speaker at an SIR of 0dB ,
d) target speaker extracted using D=2 channels, e) with D=23
channels, f) with D=50 channels.



get speaker over the uncompensated case. Recognition accu-
racy consistently increases with increase in numbers of filter-
bank channels up to 27, but in some cases best recognition ac-
curacy is achieved with 100 channels and in some cases with 50
and 30 channels.

5. Conclusions
This work has shown that visual speech features can provide
sufficient spectral information that can be used to create a bi-
nary mask for speaker separation purposes. It is observed that
the number of filterbank channels does not affect significantly
either the mask estimation accuracy or the output SIRs follow-
ing speaker separation. However, in terms of speech recognition
accuracy the method is more sensitive to the number of filter-
bank channels. At present the proposed method uses speaker-
dependent models, and while this seems typical of single chan-
nel speaker separation methods, it would be desirable to have
a speaker-independent system. The high levels of speaker vari-
ability in the visual domain make this challenging, but methods
of speaker adaptation and speaker-independent visual features
are currently being investigated [14].
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