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Abstract

Automated lip-reading involves recognising speech from
only the visual signal. The accuracy of current state-of-
the-art lip-reading systems is significantly lower than that
obtained by acoustic speech recognisers. These poor re-
sults are most likely due to the lack of information about
speech production that is available in the visual signal:
for example, it is impossible to discriminate voiced and
unvoiced sounds, or many places of articulation, from vi-
sual signals. Our approach to this problem is to regard
the visual speech signal as having been produced by a
speaker who has a reduced phonemic repertoire and to
attempt to compensate for this. In this respect, visual
speech is similar to dysarthric speech, which is produced
by a speaker who has poor control over their articulators,
leading them to speak with a reduced and distorted set
of phonemes. In previous work, we found that the use
of weighted finite-state transducers improved recognition
performance on dysarthric speech considerably. In this
paper, we report the results of applying this technique to
lip-reading. The technique works, but our initial results
are not as good as those obtained by using a conventional
approach, and we discuss why this might be so and what
the prospects for future investigation are.
Index Terms: automated lip-reading, weighted finite-
state transducers, visual speech recognition, confusion
modelling

1. Introduction
The goal of automated lip-reading is to use only visible
information from a speaker to transcribe the words that
he or she speaks. Recent studies have shown that auto-
matic lip-reading performs significantly worse than au-
dio speech recognition [1]. These poor results are most
likely due to the lack of speech information available in
a visual signal (for example, the position of some articu-
lators cannot be seen, and there is no way to tell whether
a sound is voiced or unvoiced). In addition, the pur-
pose of speech is to produce distinctive sounds to con-
vey a message, and the particular mouth-shapes used to
produce these sounds are (usually) of no concern to the
speaker: it is quite possible to produce a perfectly intel-

ligible audio signal from mouth-shapes that are not dis-
tinct, something that is verified by human lip-readers who
report that some people are much more “readable” than
others. Furthermore, mouth shapes are severely affected
by co-articulation [2]. Because of these limitations, hu-
man lip-readers make heavy use of pragmatics and con-
textual information to understand what is being spoken
[3].

Visual speech has an interesting relationship to
dysarthric speech. Dysarthric speakers have poor control
over their articulators due to medical conditions that af-
fect their motor functions (such as cystic fibrosis, stroke
etc.). This leads to a phonemic repertoire that is both
reduced and distorted, and hence to speech that has low
intelligibility, and is difficult to recognise - an obvious
parallel with visual speech, where certain sounds cannot
be distinguished visually. In previous work on dysarthric
speech recognition, we learnt patterns of phonemic con-
fusions from a talker, and when these confusions were
compensated at recognition time, recognition accuracy
increased [4]. We take a similar approach to lip-reading:
we model visual speech as a speech signal produced by
a speaker who has a limited phonemic repertoire, and
learn the patterns of confusion between the ground-truth
phoneme sequences and the recognised sequences. At
recognition time, we find the most likely interpretation of
a reduced/distorted phoneme output sequence in the light
of these patterns, as was successfully explored in [5].

Figure 1 illustrates the “standard” approach and our
proposed approach. In this study, we use utterances of
isolated words. Both approaches begin by converting the
visual signal into a sequence of feature vectors (described
in section 2). Hidden Markov models (HMMs) of each
phoneme are then built, as described in section 5. In the
standard approach, the input feature vector sequence is
decoded by forming a network of phoneme models such
that any path through the network represents the tran-
scription of one of the words in the vocabulary. The
most probable route through this network is found using
the Viterbi algorithm, and the word associated with this
route is the recognised word. In our proposed approach,
the recogniser first decodes a set of n-best phoneme se-
quences under the influence of a phone bigram language



model and represents this set as a transducer, P . These
sequences are passed to a second transducer, C, which
is a model of confusions made in this decoding, built by
passing a hold-out set through the recogniser. C then ex-
pands P into a much larger set of hypotheses, together
with their associated probabilities. A third transducer D
allows only hypotheses that represent vocabulary words
to be decoded. The word associated with the most likely
path through the transducer cascade is selected as the
recognised word.

2. Data Capture and Features
The data used in these experiments were captured from a
single female speaker who spoke six repetitions of a set
of 211 isolated words. The videos were captured with the
speaker at a full-frontal pose and recorded using a Sanyo
Xacti camera at 1080p resolution with a progressive scan
at 59.94 frames per second.

The words were chosen to provide a high coverage
of bigram phoneme pairs. There were an average of 4.6
phones in each word, with the shortest words having only
two phones and the longest having seven phones.

For visual speech features, an Active Appearance
Model (AAM) was used. This choice was motivated by
the work conducted in [6], which concluded that model-
based features (such as AAMs) perform significantly bet-
ter than other techniques such as discrete cosine trans-
form features or eigenlips. More about building AAMs
and extracting visual features can be found in [7].

Sufficient modes of variation are retained to cap-
ture 85% of the variation in both shape and appearance.
Velocity (∆) and acceleration (∆∆) features were also
added. Finally, all dimensions of the feature-vector are
z-score normalised across the utterance. Utterance files
across the six recording sessions are randomly shuffled
to remove any bias due to a particular session.

3. Weighted Finite-State Transducers
Weighted finite-state Transducers (WFSTs) have been ex-
tensively applied to problems in audio speech recognition
(ASR) and natural language processing (NLP). Similar to
a finite-state machine, a WFST is a network of states with
directed transitions that has an additional ability to map
from an input symbol to an output symbol. Transitions
between states are weighted with probabilities so that any
path through the transducer has an associated likelihood
[8] [9].

Formally, a WFST can be defined as an eight-tuple
(Σ,Ω, Q,E, i, F, λ, p) consisting of: Σ, a finite, non-
empty set of input symbols, Ω, a finite, non-empty set
of output symbols, Q, a finite, non-empty set of states,
E, a finite set of transitions that define the relationship
between states (Q), i: an initial state (i ∈ Q), F , a set
of final states (F ⊆ Q), λ, an initial weighting and p, a

function to define the final weighting.
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Figure 2: A simple weighted finite-state transducer

The example WFST shown in figure 2 takes an in-
put string (in this case abc) and produces an output string
(xyz) according to the shortest path for a given input se-
quence (in this case there is only one path). These weight-
ings are typically defined by negative log probabilities
when the topology is initialised.

Two WFSTs (A and B) can be composed together
(A ◦ B) to form a single WFST using the output of A
as the input to B. Although this provides a method to
implement NLP translations, when composing multiple
WFSTs, the networks increase dramatically in size. De-
terminisation and minimisation both provide methods for
pruning WFST networks, therefore reducing computa-
tional expense [10].

3.1. WFSTs in Speech Recognition

There have been many applications of WFSTs in speech
recognition [4, 10, 8]. The speech recognition transduc-
tion cascade can be defined as a composition of the trans-
ducers P ∗, C, D and M [10], defined as:

1. P ∗: a transducer representing the recognised se-
quence of phones. When performing recognition
using the standard approach, it is well-known that
the “top” output sequence is not necessarily the
most accurate, and so the n-best sequences are of-
ten used. For use in our own technique, this set of
sequences must first be converted to a transducer.
All n phone sequences are aligned to one another
using dynamic programming (DP) to produce n
aligned phone sequences of the same length. These
sequences are then modelled as a WFST (an exam-
ple is shown in figure 3a). We explored the use of
up to 15-best phone sequences but found that our
system performed best when we modelled the top
9-best phone sequences as a WFST.

2. C: a transducer modelling the possible confusions
and reduced phonemic repertoire (represented with
negative log probabilities) of insertions, substitu-
tions and deletions.

3. D: the dictionary transducer mapping sequences of
recognised phones sequences into complete words

4. M : defines the legal sequences of words with a
word-level language model. For the purpose of the
experiments conducted in this paper on an isolated
word dataset, this transducer model is omitted.
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Figure 1: A comparison of the standard approach and proposed approaches to lip-reading

Figure 3 shows the four transducers representing each
of the aspects of the speech recognition cascade. The
most likely recognised sequence can be computed by
finding the best path (λ∗) through the composed and
pruned transducer network:

λ∗
(
min(det(P ∗ ◦ C ◦D ◦M))

)
, (1)

where determinisation (det()) and minimisation
(min()) are WFST pruning techniques and P ∗, C, D,
M are composed to build the cascade. Even with a rela-
tively small vocabulary, building the composition of these
four WFSTs introduces efficiency issues. This is espe-
cially the case when decoding (i.e. finding the lowest
cost path through the network). The OpenFST library
[11] was used to build the WFST networks described in
this paper.

4. Experiments
4.1. Baseline1

We performed standard lip-reading recognition as a base-
line system using phone-level HMMs as performed in
previous lip-reading work [12]. Each phone HMM was
built with a left-to-right topology consisting of five emit-
ting states and eleven mixture components, which was
found to give the highest accuracy. A total of 43 HMMs
were trained, one for each phone, with an additional si-
lence HMM. The models were trained using the phone-
level transcription of each word and a “flat-start” proce-
dure [13] using ten re-estimations of embedded training.
For all results, we use cross-fold validation to train and
test the systems: five repetitions of the vocabulary are
selected for training and the remaining repetition for test-
ing. This is then repeated six times, and the reported re-
sult is the mean over the six tests.

4.2. Baseline2

It has been known for many years that the method of de-
coding a phoneme string and then finding the sequence
of words that best match this string leads to sub-optimal
performance. In practice, it is always better to use the
technique described here as the “standard” approach, in
which the recogniser uses a network that permits it to de-
code only legal words. However, the confusion modelling
approach adopted here requires that a phoneme string
is decoded initially. We were curious to see how well
a system that used the method of decoding a phoneme
string and then finding the best matching sequence of
words that match this string (without any confusion mod-
elling) would work. This would give us a baseline against
which to measure the gain introduced by adding confu-
sion modelling. Hence we built a system that decoded the
best phoneme string and then identified the best-matching
word by using DP between this string and the phoneme
transcriptions of all the words in the vocabulary (no con-
fusion modelling was used here).

4.3. Identity Confusion Matrix (ICM)

Training the weights for the confusion transducer model
(introduced as C in section 3.1) is the most challenging
task in a WFST cascade. Our first experiment used the
identity matrix as a confusion model, i.e. we pretend that
the recogniser is perfect and there are no confusions mod-
elled. To avoid−∞ log probabilities on off-diagonal ele-
ments, we add a small probability mass to every element
in the identity matrix.
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(a) P ∗ represents the n-best noisy transcription produced by the
phoneme recogniser. Transcriptions are warped together to form
a single transducer with alternative paths representing the n-best
options. For this example, the 2-best transcriptions were chosen
and represented as a WFST: /f/ /ow/ /n/ and /l/ /ow/ /m/. These can
be combined to form a total of four possible phone sequences.

0/0

f:f/0.600
ow:ow/0.300
n:n/0.5
z:z/0.400
iy:iy/0.300
m:m/0.5
d:d/0.400
l:l/0.100
l:f/0.100
m:n/0.100

(b) C represents elements in the confusion matrix where row i is
the input and column j is the transitioned output. The element from
the probability confusion matrix is converted into a negative log
weighting for the WFST.

0 1f:- 2ow:- 3n:- 4

-:PHONE

5d:-

6

z:-
-:PHONED
-:PHONES

(c) D provides the phoneme-to-word mapping, restricting only
valid sequences of phonemes to valid words. In this example,
the vocabulary consists of three words: PHONE, PHONED and
PHONES. In the transducer cascade, the output from the confusion
matrix is restricted to provide only valid words using this dictionary
model.

0 1!ENTER/0
2this/0.603

3is/0.884
was/0.666

4a/0.323
5

phone/0.019
phoneme/0.079

6/0

!EXIT/0

!ENTER/0

(d) Finally, M represents the sentence-level language model - map-
ping sequences of words produced by the dictionary to valid sen-
tences. For the purposes of this work on isolated words, the M
transducer is omitted from the cascade.

Figure 3: A visual representation of the WFST cascade
used to recognise a simple example sentence. (a) repre-
sents the input noisy string, (b) models the confusion pat-
terns, (c) provides a strict model to force phone sequences
into words and (d) maps the output word sequences to
valid sentences.

4.4. Confusion Matrix derived from the Standard
Approach (SCM)

We next used a confusion-matrix produced by using the
output from the standard approach. DP was used to align
the phoneme string corresponding to each output recog-
nised word with the phoneme string corresponding to
the correct word, and the phoneme alignment pairs were
counted. These counts were then converted to probabili-
ties by normalising across the rows.

4.5. Use of timing information to estimate the Confu-
sion Matrix (TCM)

When alignments produced by the above technique were
analysed, it was found that there were many cases where
the purely symbolic alignment used here was highly
inaccurate because the time-registration of the aligned
phoneme pairs was very different. We therefore at-
tempted to introduce some timing information into the
estimation of confusions so that only phoneme pairs that
occurred at approximately the same point in time would
be regarded as genuine confusions: other alignments
would be disregarded. Each recognised phoneme se-
quence produced by the phoneme recogniser was aligned
to the corresponding ground-truth transcription using DP.
The “offset” of an aligned phoneme pair is defined as
the absolute timing difference between the central point
of the reference phoneme and the central point of the
aligned output phoneme (both sequences contain infor-
mation about the time-registration of each phoneme in the
sequence). Hence we were able to produce a distribution
of offsets for each label phone. Using the absolute mean
offset values for a particular ground-truth phoneme and a
specified window (typically between 0.5 and 3 standard
deviations from the mean offset), each phoneme align-
ment pair is either accepted or rejected as a genuine con-
fusion based on whether it falls inside this acceptance
window. A further constraint was imposed on the accep-
tance criteria to remove any confusions between vowels
and consonants. Figure 4 demonstrates the use of the off-
set window and the system for accepting phoneme con-
fusions based on the timing information.

For this experiment, the data were split into three sets;
training (four repetitions), confusion-matrix estimation
(one repetition) and testing (one repetition).

4.6. Smoothing the Confusion Matrix

Element Cij of a confusion-matrix is an estimate of
the probability that phoneme pi will be confused with
phoneme pj . We also include an extra row to account for
insertions of phonemes and an extra column to account
for deletions. In practice, the diagonal elements (Ci,i)
usually dominate a row, and it is necessary to re-distribute
some of this “probability mass” from the diagonal to off-
diagonal elements of the row in order to increase the like-
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Figure 4: Alignment of the ground-truth transcription and
noisy output from HMM recognition for the word ad-
verbs. The offset window is characterised with a mean
(µ) and standard deviation (σ) computed by observing
offsets between ground-truth and recognised sequences
at training. Each recognised phone is subject to a deci-
sion based upon whether it falls within the offset window
(defined as ±x standard deviations away from the mean
offset).

lihood of confusions appearing in new hypotheses. We
refer to this as “smoothing” and we have used use three
smoothing methods.

4.6.1. Base Smoothing (TCM-base)

In base smoothing, we simply re-assign a fixed percent-
age of the diagonal probability to all the other classes on
the same row. In this work, re-distributing about 10% of
the diagonal provided the best performance.

4.6.2. Exponential Smoothing (TCM-exp)

Exponential smoothing gives us more control over the re-
distribution by using the parameter α as shown in equa-
tion 2.

zi,j =
e−αCij∑
k e

−αCkj
0.5 < α < 5, (2)

where Cij is the value of the original confusion ma-
trix element, zi,j is the resulting smoothed element, and
α is a parameter that controls the degree of smoothing.
As α → 0, the probability mass is equally distributed
over a row, and as α → ∞, the mass is concentrated in
the highest element.

4.6.3. Base Smoothing using visemic classes (TCM-
base-vis)

This method uses base smoothing (described as 4.6.1)
but smoothes based upon prior knowledge of confusions
in visual speech. Firstly, we re-distribute an amount
from the diagonal count across the row except the phones
within its particular visemic class. For these phones,
the new diagonal count is split evenly and re-distributed
to these classes. For example, in the mapping defined
in [14], the phonemes /b/, /p/ and /m/ are in the same

visemic class. Therefore, we distribute 10% of the di-
agonal count for phoneme /b/ across the row, ignoring
the phonemes in the same class (/b/, /p/ and /m/ ). We
then distribute the left-over diagonal count evenly be-
tween these three classes, making them equally likely.

The viseme groupings that were used are taken from
previous work on phoneme-to-viseme mappings [14].

5. Results
Table 1 compares the results of the experiments on iso-
lated word recognition. The Baseline 1 result (59.95%),
using the standard approach, is quite good for a vocabu-
lary of 211 words, although it should be noted that this
is a speaker-dependent system. However, if we use the
sub-optimal approach of decoding a phoneme string and
then finding the best-matching word to this string (Base-
line 2), accuracy drops dramatically to 20.16%. Turn-
ing to the experiments on our proposed method, using an
identity confusion-matrix (i.e. no confusion modelling)
gives an accuracy of 35.36%. It is interesting that this is
considerably higher than Baseline 2. This is because the
confusion-matrix must have very small confusion proba-
bilities off the diagonal in order for any legal word to be
decoded by the D transducer, which enables a rich set of
candidate words. However, DP uses a cost function that
finds only the closest match.

If the confusion-matrix is estimated from the output
of the baseline recogniser, accuracy falls to 21.42%. This
result suggests that many of the alignments are not gen-
uine confusions, but are in fact an artefact of the recog-
nition process, something that was commented upon in
section 4.5. Using timing information improves accu-
racy hugely with base smoothing giving a better result
(49.70%) than exponential smoothing (42.68%). How-
ever, the best result from the WFSTs is still about 10%
lower than the “standard” approach.

6. Discussion
We have described a new approach to automatic lip-
reading in which a model of the confusions in the vi-
sual signal is used to correct the errors from a visual
phoneme recogniser. We have shown that this method
is effective, in that when it is compared with a similar
system that does not use confusion modelling, word ac-
curacy increases from 20.16% to 49.7%. However, the
accuracy produced by this method is still lower than that
produced by a “standard” system that uses a constrained
network to decode (59.9%). Despite this initial result,
we remain convinced that this technique has promise.
Our future work will be mostly focused on improving the
confusion-modelling. Incorporating the timing informa-
tion into confusion-modelling gave a very large gain in
performance, but it is clear that the confusion matrix still
contains noisy entries, and we are working on the use of



Technique Word Accuracy
(std. deviation)

Standard system, as shown in fig-
ure 1 (Baseline 1)

59.95% (4.19)

Phone decoding followed by
string-matching (Baseline 2)

20.16% (1.43)

WFSTs with identity confusion
matrix (ICM)

35.36% (2.27)

WFSTs with confusion matrix
produced by standard approach
(SCM)

21.42% (3.30)

WFSTs with timing confusion ma-
trix and base smoothing (TCM-
base)

49.70% (1.60)

WFSTs with timing confusion ma-
trix and exponential smoothing
(TCM-exp)

42.68% (2.30)

WFSTs with timing confusion ma-
trix and base smoothing using
visemic classes (TCM-base-vis)

46.58% (3.09)

Table 1: Word-level recognition results (word accuracy
and standard deviation)

(a) iterative techniques to minimise error in the confusion
model and (b) building more reliable estimates based on
a level of confidence that “islands” of the decoded signal
were recognised correctly. In the task described here, the
amount of data available for confusion-matrix estimation
was very small and the task was particularly simple for
a standard recogniser. We have recently completed the
recording of a much larger dataset of continuous speech
which should alleviate both of these problems and enable
us to develop and test our technique under more realistic
conditions.
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