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Abstract
In this paper, we investigate audio-visual interac-

tion in sparse representation to obtain robust features for
audio-visual speech recognition. Firstly, we introduce
our system which uses sparse representation method for
noise robust audio-visual speech recognition. Then, we
introduce the dictionary matrix used in this paper, and
consider the construction of audio-visual dictionary. Fi-
nally, we reformulate audio and visual signals as a group
sparse representation problem in a combined feature-
space domain, and then we improve the joint sparsity fea-
ture fusion method with the group sparse representation
features and audio sparse representation features. The
proposed methods are evaluated using CENSREC-1-AV
database with both audio noise and visual noise. From the
experimental results, we showed the effectiveness of our
proposed method comparing with traditional methods.
Index Terms: sparse representation, audio-visual speech
recognition, feature fusion, noise reduction, joint sparsity
model

1. Introduction
The audio-visual automatic speech recognition (ASR)
system [1], [2], using both acoustic speech features and
visual features has been investigated and found to in-
crease the robustness and improve the accuracy of ASR.
The audio-visual ASR has achieved better performance
than the audio-only ASR when the audio signal is cor-
rupted by noise, and it can also achieve a slight improve-
ment when the audio is clean. To improve the perfor-
mance of the system, noise reduction method was often
employed on speech signal. Nevertheless, in real envi-
ronment for example in a car, not only the speech signal
but also the visual signal are often corrupted by audio and
visual noise. Therefore, noise reduction method for both
speech and visual signals is still categorized into chal-
lenging tasks for the audio-visual ASR system.

Recently, sparse representation (SR) [3] has gained
considerable interests in signal processing. SR is known
as a type of sampling theory, which relies on the theory
that many types of signals can be well approximated by

a sparse expansion in terms of a suitable basis, that is,
we can represent a certain signal with a small number of
linear incoherent measurements. A robust audio-visual
speech recognition system which has been motivated by
the emerging theory of SR noise reduction [4],[5] was
introduced. It shows effectiveness on both acoustic and
visual speech respectively, and the feature fusion methods
on audio-visual SR features were discussed.

In this paper, we investigate audio-visual interaction
of the audio-visual dictionary matrix, and we reformu-
late audio and visual signals as a group sparse represen-
tation problem in a combined feature-space domain, and
then we proposed a feature fusion method with the group
sparse representation features and audio sparse represen-
tation features.

2. Sparse Representation Features

2.1. Sparse Representation Formulation

Consider an input vector y ∈ Rd, and a dictionary matrix
A ∈ Rd×n(d < n) consisting of training vectors, and an
unknown vector x ∈ Rn, such that y = Ax. If the dictio-
nary A is overdetermined, the linear equations, y = Ax
can be uniquely determined by taking the pseudo-inverse
y = Ax, which is a linear least squares problem. The
problem can be solved by l1 minimization:

(P1) : argmin||x||1 subject to y = Ax. (1)

Since d < n, and if x is sufficiently sparse and A is in-
coherent to the basis in which x is sparse, the solution
which can be uniquely recovered by solving (P1).

There are several l1-min solvers which can be used
to solve the (P1) problem, including orthogonal match-
ing pursuit (OMP) [6], basis pursuit (BP), and LASSO.
In this work, we use the OMP method to solve the (P1)
problem. The OMP solver works better when x is very
sparse, and OMP is also a fast solver for the data of our
work.



2.2. Noise Reduction via Sparse Representation

The speech signal is observed in an additive noise, then,
a noisy signal mt, can be written as

mt = st + nt, (2)

where st is a clean speech signal and nt is a noise signal
in time t. When the SR problem y = Ax is applied to a
noisy signal, the y = Ax can be rewritten as

y = ys + yn = [AsAn][x
T
s x

T
n ]

T = Ax, (3)

where xn indicates a vector of the noise exemplars and
An indicates a dictionary matrix containing noise exem-
plars. xs and As indicate the vector of speech sample and
a matrix containing speech sample exemplars. The vector
of y and dictionary A are feature parameters. For the case
of visual speech, a signal m, s, and n are facial images
for each time frame t and we use eigenlip expansions as
feature parameters for y and A.

Equation 3 shows a linear noise reduction method,
whereas an MFCC domain has the non-linear relation.

F (mt)
2 = F (st)

2 + F (nt)
2 (4)

where F (mt) denotes Fourier transform of time signal
mt, and F (mt)2 denotes power spectra of mt. Taking
logarithm of power spectra by filter banks in mel-scaled
frequency, their cosine transform are mel-frequency cep-
strum coefficients (MFCC). When the vectors, y, xs and
xn are MFCC, the following equation stands as approxi-
mation.

exp(y) = exp(s) + exp(n), (5)

where y, s, and n are MFCC features of noisy speech,
clean speech and noise, respectively. Note that parame-
ters in MFCC are linear for channel distortion, such as
the difference in microphones or transmission lines. The
equation 3 can be written as

exp(y) = [Aexp(s)Aexp(n)][x
T
s x

T
n ]

T = Ax. (6)

To reduce the noise in speech signal, a dictionary ma-
trix A is constructed from the entire training set including
not only the clean speech samples from all k classes but
also the noise samples. Then, for a given speech sample
corrupted by noise, equation 6 is solved, and a coefficient
vector x is obtained, so that the dominant nonzero coef-
ficients in x reveal the true class of the speech sample.
Therefore, ideally, the speech sample ys will be mapped
into the clean speech sample category and yn will be
mapped into the noise sample category of the dictionary
matrix A. Finally, a corresponding vector Asxs is formed
with As and xs, hence, we can describe the clean speech
sample as

ys = Asxs. (7)

3. Database and Features
3.1. CENSREC-1-AV Database

The evaluation framework CENSREC-1-AV [7] for
audio-visual ASR system is utilized in this work. The
data in CENSREC-1-AV is constructed by concatenat-
ing eleven Japanese connected utterance of digits from
zero to nine, silence (sil), and short pause (sp). It in-
cludes a training data set and a testing data set. The train-
ing data consists of 3,234 utterances. 1,963 utterances
were collected in the testing data. The testing data set in-
cludes not only clean audio and visual data but also noisy
data. The audio noisy data were created by adding in-
car noises recorded on city road and expressway to clean
speech data at several SNR levels. Visual distortion was
also conducted by simulating a driving-car condition by
a gamma transformation.

3.2. Audio and Visual Features

To create the audio features, 12-dimensional MFCCs and
a static log power, and their first and second derivatives
are extracted from an audio frame. As a result, a 39-
dimensional audio feature is obtained every 10ms. Dif-
ferent from the training data, the testing data include not
only the clean audio and visual data but also noisy data.
To ensure the recognition accuracy of baseline covers a
wide range, the audio features at several SNR levels (5dB,
0dB, and -5dB) of in-car noises recorded on an express-
way, and SNR levels (15dB, 10dB, and 5dB) of classical
noise is also extracted.

A 30-dimensional visual feature is also computed,
that consists of 10-dimensional eigenlip components [2]
and their ∆ and ∆∆ coefficients. Feature interpolation is
subsequently conducted using a 3-degree spline function
in order to make the feature rate 100Hz, as same as the
audio rate. Salt&Pepper noise with noise density of 0.05,
Gaussian white noise with zero mean and 0.01 variance
are employed in our work.

4. Methods
4.1. Audio-visual Dictionary Matrix A

In this work, we represent a given sample by a few train-
ing samples of the dictionary in the MFCC or PCA do-
main by solving the SR noise reduction problem. There-
fore, our dictionary matrix A is constructed with the clean
speech samples and noise samples that are chosen on the
base of phone classes. A time-aligned transcription [7] of
the training data is used to locate the frame number of a
phone class. The phone list used in the CENSREC-1-AV
database includes seventeen phones and sil. For phone
class pi(i = 1, 2, . . . , 18), we randomly select a phone
segment pi,x(x = 1, 2, . . . q) corresponding to the phone
class i from the training data set, q is the selected phone
segment number of training data in each class. Then, the



Figure 1: The construction of audio-visual dictionary ma-
trix.

selected phone segment of the phone class pi can be writ-
ten as

Api = [pi,1, pi,2, . . . , pi,q], (8)

where Api is the selected phone segment of the phone
class i and q is sixty in this work. The frame length of
pi,x is about five to thirty. In every phone segment pi,x,
three frames fj are randomly selected after cutting the
start and last 10% of frames of the phone segment, that is

pi,x = [fi,x,1, fi,x,2, fi,x,3]. (9)

To support noise reduction, we also select the noisy sam-
ples Asil,SNR from the nonspeech segment with the SNR
levels of 5dB/15dB, 0dB/10dB and -5dB/5dB for acous-
tic samples. The audio dictionary Aa can be written as

Aa = [Ap1 , . . . , Ap18 , Asil,5dB , . . . , Asil,−5dB ]. (10)

We create an audio dictionary Aa and a corresponding
visual dictionary Av for calculating audio and visual SR
features. Because we have only one noise level for visual
samples, we select the visual noise samples Av

sil,noise
three times to keep the length of visual dictionary as same
as the audio dictionary.

Av = [Av
p1
, . . . , Av

p18
, Av

sil,noise, . . . , A
v
sil,noise]. (11)

Finally, a multi-stream dictionary Aav consisting of audio
and visual samples is obtained by integrating the audio
dictionary Aa and the visual dictionary Av .

Figure 1 shows four types of multi-stream dictionary.
These dictionaries (AV01,..., AV04) are used to evaluate
the interaction of audio and visual modalities when we
solve the audio-visual sparse representation problem. An
experiment was performed to evaluate the interaction of
audio and visual when the audio-visual SR problem is
solved.

Figure 2: The influence of dictionary construction.

Figure 2 shows the results of this experiment to in-
vestigate the influence of dictionary construction with the
joint sparsity model (proposed method 3). The classi-
cal and gaussian data set was utilized in this experiment.
From the results, we can know that AV04 gets the best
recognition accuracy, especially in the SNR 10dB and
5dB. Therefore, the dictionary of AV04 was chosen to
perform our experiments.

In this paper, we investigated four methods to obtain
audio-visual SR features. Method 1 and 2 have already
been proposed in [5], to compare with the proposed meth-
ods, we introduce them briefly. Method 3 and 4 are the
proposed methods in this paper.

4.2. Method 1: Late Feature Fusion

In this method, firstly, audio SR features and visual SR
features are created separately. To create the audio SR
features ysr

a , we use the audio dictionary Aa and solve
the equation ya = Aaxa with the noise reduction method
equations 3 and 7. In the same way, we can obtain the
visual SR features ysr

v . Then, the two SR features are
integrated into audio-visual SR features. Figure 3 depicts
the feature extraction process. In this figure, the most
left-hand graph shows the extraction method used in this
subsection.

ysr
a = Aaxa (12)

ysr
v = Avxv (13)

ysr
av = ((ysr

a )T , (ysr
v )T )T (14)

4.3. Method 2: Late Feature Fusion(w/t weight)

The second left graph in figure 3 illustrates how the
audio-visual SR features of this method can be obtained.
Firstly, we solve the audio and visual SR problems sep-
arately as same as method 1. Then, equation 15 is uti-
lized to obtain the audio-visual coefficient xav with xa



Figure 3: Feature fusion methods

and xv . w is an audio stream weighting factor. And the
dictionary matrix Aav is constructed with equation 16.
Finally, equation 17 is utilized to create the audio-visual
SR features with the audio-visual coefficient xav and the
dictionary matrix Aav .

xav = xa × w + xv × (1− w) (15)

Aav = (AT
a , A

T
v )

T (16)

ysr
av = Aavxav (17)

4.4. Method 3: Joint Sparsity Model(JSM)

The previous two methods, audio features and visual fea-
tures were obtained by solving the SR problem respec-
tively. It means that the audio and visual SR can be
treated as separated problems, therefore, there are no in-
fluences between the two SR features when solving the
SR problem. The narrow-band array processing and lo-
calization using sparsity model is already known in the
literature [8], in which a joint sparsity model was sug-
gested and localization robustness was explored. In this
experiment, the integrated audio-visual features yav and
audio-visual dictionary Aav04 was used to solve the SR
problem yav = Aav04xav.

4.5. Method 4: Feature Fusion(w/t weight & JSM)

Method 3 treats audio and visual with no discrimination
when solve the SR problem. Because the audio signal
and visual signal have a huge different contribution to the
recognition accuracy, the results of method 3 will be af-
fected because of the difference. An audio-only adap-
tation / multimodal visual adaptation method [9] inves-
tigated the multimodal visual adaptation, it showed the
effectiveness of using multi-modal visual adaptation in-
stead of visual adaptation. In this experiment, we extend
the joint sparsity model by replacing the visual coefficient
xv with audio-visual coefficient xav to match our needs.

The most right-hand graph in figure 3 illustrates how
the audio-visual SR features can be obtained. Firstly, we
solve the audio-visual SR problem with the audio-visual
dictionary as same as method 3 to obtain an audio-visual
coefficient xav04, and solve the audio SR problem to ob-
tain an audio coefficient xa. Then, equation 18 is uti-
lized to obtain the audio-visual coefficient x

′

av with xa

and xav. w is the audio stream weighting factor. Finally,
with the equation 19, the new audio-visual SR features
can be obtained.

x
′

av = xa × w + xav04 × (1− w) (18)

ysr
av = Aav04x

′

av (19)

5. Experiments
In this work, we created audio-visual SR features (ysrav)
for both training data and test data. Then, models were
learned using the training data. The test data was used to
evaluate the proposed methods. For methods 2 and 4, we
changed the weight w from 0.1 to 1.0 with 0.1 steps to
obtain the best recognition accuracy.

Figure 4 shows the recognition accuracies for audio-
visual SR features of the proposed methods. The baseline
results of CENSREC-1-AV, which is a standard audio-
visual ASR system, and method 1 and 2 results are also
included for comparison. In these experiments two audio
and two visual noises were prepared. For the classical and
gaussian data set, we can know that method 3 obtained
better accuracy than method 1, but for the expressway
and Salt&Pepper data set, method 1 obtained better accu-
racy. The audio-only recognition results [5] showed that
with the SR method, the accuracy of expressway in -5dB
can be improved from 49.11% to 85.23%, however, the
classical data set in 10dB, the accuracy can be improved
from 49.84% to 79.34% due to non-stationary noise. And
the visual-only of Salt&Pepper and gaussian can only be
improved 8.5% and 6.96% respectively. We can see that,



Figure 4: Recognition accuracy of proposed methods.

when the difference of the two streams recognition accu-
racy is large, method 3 is not a robust method. In con-
tract, when the difference is smaller, method 3 is better
than method 1.

From the results of method 4, the best recognition ac-
curacy was obtained when the weight is 1.0 in 15dB, 0.7
in 10dB and 0.7 in 5dB for the classical and gaussian data
set, and they are 0.7 (5dB, 0dB and -5dB) for the express-
way and Salt&Pepper data set. Compared with method
2, method 4 improved the performance on both data sets,
achieved 1.28% for classical and gaussian data set in 5dB,
and 1.01% for expressway and Salt&Pepper data set in -
5dB. Method 4 uses audio-visual coefficients instead of
visual coefficients to calculate the SR features. There-
fore, the classification accuracy using the joint sparsity
model and audio-only is better than using audio-only and
visual-only.

6. Conclusions
In this paper, we focus on audio-visual ASR system with
an SR noise reduction framework to create a robust ASR
system. Then, we proposed a joint sparsity feature fusion
method which uses audio-visual interaction to improve
the traditional feature fusion method. The experiment
results showed that the joint sparsity model is an effec-
tiveness method to create audio-visual SR features. For

future work, there are still some work need to do to im-
prove the current method and simplify the complexity of
the system to create real-time system.

7. Acknowledgment
The part of this work was supported by JSPS KAK-
ENHI Grant (Grant-in-Aid for Young Scientists (B))
No.25730109.

8. References
[1] S. Tamura, K. Iwano, and S. Furui, “A stream-

weight optimization method for multi-stream
HMMs based on likelihood value normalization,”
Proc. Int. Conf. ICASSP2005, vol.1, pp.469-472
(2005).

[2] C. Miyajima, K. Tokuda, T. Kitamura, “Audiovisual
speech recognition using MCE-based HMMs and
model-dependent stream weights,” Proc. Int. Conf.
ICSLP2000, vol.2, pp.1023-1026 (2000).

[3] E.J. Candes and M.B. Wakin, “An Introduction To
Compressive Sampling,” IEEE Trans. Signal Pro-
cessing Magazine, vol.25, no.2, pp.21-30 (2008).

[4] P. Shen and S. Tamura, and S. Hayamizu, “Feature
reconstruction using sparse imputation for noise ro-
bust audio-visual speech recognition,” Proc. Int.
Conf. Signal Information Processing Association
Annual Summit and Conference (APSIPA ASC),
2012 Asia-Pacific, no.125 (2012).

[5] P. Shen and S. Tamura, and S. Hayamizu, “Multi-
Stream Sparse Representation Features for Noise
Robust Audio-visual Speech Recognition,” Trans.
Acoustical Science and Technology (In press).

[6] S.G. Mallat and Zhifeng Zhang, “Matching pursuits
with time-frequency dictionaries,” IEEE Trans. Sig-
nal Processing, vol.41, no.12, pp.3397-3415 (1993).

[7] S.Tamura et al., “CENSREC-1-AV: An audio-visual
corpus for noisy bimodal speech recognition,” Proc.
Int. Conf. AVSP2010, pp.85-88 (2010).

[8] D. Malioutov, M. Cetin, and A. Willsky, “A sparse
signal reconstruction perspective for source local-
ization with sensor arrays,” IEEE Trans. Signal Pro-
cessing, vol.53, no.8, pp.3010-3022 (2005).

[9] S.Tamura, M. Oonishi, and S. Hayamizu, “Audio-
visual Interaction in Model Adaptation for Multi-
modal Speech Recognition,” Proc. Int. Conf. AP-
SIPA ASC2011, Xi’an, China, PID:15 (2011).




