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Abstract

We present an iterative algorithm for automatic feature
selection and weight tuning of target cost in the context
of unit selection based audio-visual speech synthesis. We
perform feature selection and weight tuning for a given
unit-selection corpus to make the ranking given by the
target cost function consistent with the ordering given by
an objective dissimilarity measure. We explicitly perform
feature elimination to reduce the redundancy and noise in
target cost calculation based on an objective metric. Find-
ing an objective metric highly correlated to perception
should improve the quality of tuning. This is the purpose
of the second part where we are making an attempt to
such goal. Firstly, we present the human-centered eval-
vation done of the synthesized audio-visual speech and
secondly, its preliminary analysis in relation to the objec-
tive evaluation metrics. This analysis of correlation be-
tween objective and subjective evaluation results shows
interesting patterns which might help in designing better
tuning metrics and objective evaluation techniques. The
key point is to find a link between objective and percep-
tual measures.

Index Terms: Unit selection, audio-visual speech syn-
thesis, target cost, target feature selection, weight tuning.

1. Introduction

Speech synthesis based on unit selection is widely used
due to its capability of preserving the rich information
in the speech signal. The key to the synthesis of ‘natu-
ral’ sounding speech is the selection of units which are
perceptually suitable for the targets required for synthe-
sis. For this selection of units, assigning a cost called the
target cost to quantify the perceptual suitability is crucial
[1]. This is important for the pre-selection of appropriate
candidates from a typical corpus which generally has a
large number of candidates. It is also necessary for the
selection of the candidate sequence for the final synthe-
sis. The formulation of the target cost function has been
divided into Independent Feature Formulation (IFF) and
Acoustic Space Formulation (ASF) [2]. In the former ap-

proach, only high level features which consist of linguis-
tic and phonetic characteristics alone are used to describe
speech units and the calculation of target cost is based on
vectors expressing these assuming they are independent.
The usage of high-level features allows the automatic se-
lection of candidates with suitable prosodic characteris-
tics rather than prediction based on prosodic models [3].
The latter approach i.e. ASF includes a representation of
the required target in terms of speech parameters termed
as partial-synthesis function [2].

Intuitively the best method for target weight tuning
would be hand tuning as it directly addresses the per-
ceptual performance objective. Several algorithms have
been proposed which perform target cost weighting by
hand tuning [4, 5, 6, 7]. The factors like inter-personal
perceptual differences and time requirement for listening
make it laborious. It is also constrained by its scope as
the tuning can only be done on a small set of synthesized
sentences. Thus, the global performance of a hand-tuned
target cost is not guaranteed to be the best.

Automatic weight tuning of target cost overcomes the
difficulties and disadvantages of hand tuning and per-
forms comparable to the latter. Weight Space Search
(WSS) as described in [1] is based on the comparison
of the acoustic speech of the synthesized sentence and
the natural utterance. Many approaches are based on the
direct comparison of acoustic speech of real phonemic
unit (diphone or phoneme) with a target description and
those selected from the corpus [1, 8, 9]. Simultaneous
target and join cost tuning is proposed in some of them
[8, 9]. Each target feature accounts for the variations
in the acoustic speech and their duration, based on this
discriminative information, the features can be weighted
[3]. Another approach to weight tuning is to view unit
selection as a classification problem, in which instead of
defining an objective function to account for the subjec-
tive speech quality, the classification error is taken as the
objective function to be optimized [10].

For unit selection through IFF based target cost, hav-
ing a mutually independent set of features is very im-
portant. Having a large set of features makes it practi-



cally impossible to cover all the possible feature combi-
nations. In this paper we present a weight tuning algo-
rithm which is applicable to any IFF based target cost
function. It is an iterative algorithm for simultaneous
feature elimination and weight tuning of the descriptive
features retained. The algorithm though not specific to
acoustic synthesis, is actually developed within a frame-
work of Acoustic-Visual (AV) speech synthesis. A target
cost function is evaluated based on the comparison of the
candidate ordering by it and that based on an objective
dissimilarity calculated using acoustic and visual features
[8]. We perform explicit feature elimination which to the
best of our knowledge has not been presented in any of
the past literature. This is the first contribution of this pa-
per. This is different to the approach where a target fea-
tures take low or negligible weight in the target cost func-
tion, which is implicit feature elimination. The second
contribution of this paper is an approach for extracting
patterns of speech perception based on which users judge
speech quality from any subjective evaluation results. It
is illustrated through a preliminary analysis of subjective
evaluation results done on the speech synthesized by our
AV speech synthesis system. The ultimate goal could be
to find an objective metric highly correlated to perception
to improve the quality of tuning. This approach is simple
when compared to designing specific experiments for this
purpose [11] and can be useful in extracting global pat-
terns. In section 2, we present our feature selection and
weight tuning algorithm for target cost function. In sec-
tion 3, we describe the execution of this algorithm for
our system and give the summary of features selected for
audio-visual speech synthesis in French. In the second
part of the paper, we describe the human-centered evalua-
tion of the synthesized audio-visual speech and in section
5, we then present a preliminary analysis of the subjec-
tive evaluation results in comparison with the objective
evaluation results calculated through the comparison of
synthesized and real speech signals.

2. Feature selection and weight tuning

A general target cost function C'(¢;, u;) in a IFF paradigm
is calculated as the weighted sum of the constituent fea-
ture costs C),(t;,u;)(p = 1,..., F') by the comparison of
the elements of the target ¢; and candidate feature vec-
tors, where F' is the number of target features and w, is

the weight of feature p: C(t;,u;) = Zle w,Cy(ti, u;).
Alternative formulations are also possible but we assume
the above formulation of target cost function. This tar-
get cost function has a role not only in the initial pre-
selection of units but also in the final selection from pre-
selected candidates which is operated by resolving the
lattice of possibilities using dynamic programming algo-
rithm, where target cost is classically combined with join
cost (acoustic and/or visual). The join cost function is im-
portant for the reduction of concatenation artifacts. The

combination of these costs can lead to select a candidate
with not necessary the best target cost if we favor the join
cost. In this paper, we only focus on the target cost irre-
spective of joint cost.

The target feature vector is supposed to implicitly de-
scribe the speech realization of a target or a candidate.
During synthesis, in a IFF paradigm, the target specifica-
tion only has the target feature description but no acous-
tic or visual speech realization (see 3. for the list of used
features). But, two speech units which are similar (fea-
ture vector) are perceptually suitable for each other and
hence their target cost function should be low. We use this
comparison in acoustic/visual domain to evaluate the tar-
get cost function. For this purpose we define the follow-
ing two functions: (1) dissimilarity between two speech
units, similar to [8], (2) disorder with respect to a target
cost function for its evaluation. Then, we summarize our
feature selection and target feature weight tuning algo-
rithm which we refer to as selection-tuning algorithm.

2.1. Dissimilarity between two units

The dissimilarity measure D(u,v) between units « and v
of a particular phoneme p is defined as follows:

D(u,v) = Waur DU (u,v) + Wae D (u, v)+ |

Wys DV (u,v) + w0 DO (u, v) M
Where, D", D DV and D0 represent dissimilar-
ities in terms of the duration, acoustic speech, visual
speech and {0 of the units and wqyr, Wae, Wys and w g are
the weights given to these respective components. The
duration dissimilarity D" is calculated as the normal-
ized difference between the durations of the two units.
For the other three components (acoustic, visual and f0);
the RMSE (root mean squared error) is calculated be-
tween two trajectories normalizing the length of the two
trajectories by simple linear interpolation.

2.2. Disorder

Consider a unit ¢ as the target, and two units « and v as
candidates from the corpus whose dissimilarity measure
with respect to ¢ is D(t, u) and D(¢,v). Then, for an ideal
target cost the following condition should hold good :

D(t,u) o D(t,v) < C(t,u)oC(t,v) (2)

where, ¢ € {<,=,>}. Thus, the disorder § with
respect to the target ¢ and the two candidates v and v is
defined as follows:

_J 0 if (2) verified
0u(u,v) { ID(t,u) — D(t,v)|  else

Let U, be the complete set of candidates in the cor-
pus for a given phonemic label p. Taking each of the
units as a target at a time (see Table 1) and all the oth-
ers as candidates, the total disorder for that phoneme is



Ranking

Disorder calculation

Target Cost | Dissimilarity
C(t,c1) D(t,c) c1: Ot(er,ee) + 0¢(er,e3) = 040
O(t762) D(t,c;:,) Co 5,5(62,61) +(5t(62,03) == 0+ |D(t,CQ) 7D(t703)‘
C(t,Cg) D(t702) C3 . (515(03, Cl) + 5t(03, 02) = 0+ |D(t,03) — D(t, 02)‘

Table 1: Disorder calculation. From the corpus consider four units of the same phonetic label, a target ¢ and three candidates
{c1,¢2,¢c3}. D(t,c;) and C(t,c;) are the dissimilarity and the target cost between the target ¢ and candidate ¢;. For the given
target, the dissimilarity based ordering and the target cost based ordering of candidates is compared to calculate the disorder. The total

disorder with respect to target ¢ is the sum of the fourth column.

calculated for a particular target cost as follows: A =
Dot 2 (uyw) O0t(u, v), where, u, v, t € Up and t # u # v.
By this way, The total disorder measures the difference
between the ranking given by the target cost and given
by the dissimilarity measure. Ideally, the target cost and
the dissimilarity measure should follow the same rank-
ing. If it is not the case that means there is a disorder. In
the following sections, we refer to this total disorder as
disorder.

2.3. Algorithm

The goal of the algorithm is to tune the target costs by
synchronize the target cost with the dissimilarity mea-
sure (same ranking). The main idea of the algorithm is
that each target feature has some contributing information
which gets reflected in the speech realization implicitly.
When a feature is removed from the target cost function,
its selection accuracy will deteriorate, and the extent to
which it deteriorates quantifies the feature’s importance.
The information contributed by a feature is measured by
determining the difference in disorder when the feature
was included and excluded from a target cost. A feature
is considered to add information (resp. noise) if the dis-
order increases (resp. decreases) when excluded from the
target cost function. Those features which add informa-
tion, their weights increase proportional to their contribu-
tion. Features adding noise, their weights decrease until
they become contributing features; if a feature adds only
noise continuously, it is eliminated from the feature set
after a fixed maximum number of iterations. The execu-
tion starts by assigning same weights to all the features
and terminates when either there is no change in feature
weights or after a fixed number of maximum iterations.
Fig.1 shows the evolution of disorder and an example of
weight evolution of one feature.

3. Application to AV target cost function
tuning

We applied the feature selection and weight-tuning algo-
rithm to our speech synthesis system (see [12, 13] for a
detailed presentation). Our AV corpus used for executing
this algorithm has a total of 319 sentences which repre-
sents a total of 14634 diphones and includes a good va-
riety of the most frequent diphones. The visual speech
is represented by 12 principal components. For acoustic
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Figure 1: Figure shows the change in total disorder and weight
for the feature ‘Syllable position in Rhythm Group’ considering
duration alone in the dissimilarity measure for the phoneme a.
It shows the number of features eliminated at various iterations
from an exhaustive set of 50 features.

speech, we used 13 MFCC extracted every 10ms and O
every 5Sms.

The tuning has been done for five weight combina-
tions in the dissimilarity measure (see Eq. 1). Four com-
binations had only one dissimilarity measure (duration,
visual, acoustic and f0) i.e., only one of the weights
{Wur; Wae, Wys, wyo} being 1 and all others 0. The fifth
combination was (.25,.25,.25,.25) (i.e. equal weights
to all of them). For each weight combination, the algo-
rithm has been run separately for all the phonemes in the
phoneme set using our corpus to obtain different target
functions (different set of features and their weights) for
different phonemes (see Fig. 1 for an example).

The initial exhaustive set of target features considered
by us are the following:

e Phonetic context: previous and following phoneme’s
voicing, kind, manner of articulation, place of articu-
lation and lip shape.

e Linguistic features of the current, previous and follow-
ing phonemes’ in terms of: kind of syllable; phoneme
number in syllable; syllable position in word and
rhythmic group (RG); syllable number in word, RG
and sentence; word position in RG and sentence; word
number in RG and sentence; RG position in sentence;
position of nearest left and right silence.



Weights for vowels
Feature N o
Place of articulation 0.36 | 0.18
Lip shape 0.14 | 0.19
Manner of articulation 0.09 | 0.09
Voicing 0.07 | 0.09
Kind 0.04 | 0.06

Table 2: Important phonetic features for visual speech (fea-
tures with weights < 0.01 are not considered in these).

The above mentioned target feature set can be consid-
ered exhaustive for French language. We analyzed target
features based on their relative importance for each of the
constituent aspects included in the dissimilarity metric:
pitch, local acoustic speech, duration and visual speech.
We present for visual speech aspect (w,s = 1 in the dis-
similarity metric). Linguistic features can describe a cur-
rent candidate or its left or right context. Phonetic fea-
tures can describe a candidate left or right context. To
analyze the results, we calculate the mean and the stan-
dard deviation of weights assigned to each feature by tak-
ing together the context and the current candidate. The
weights are assigned such that the sum of the weights
over all the target features is 1.

For visual speech, the total weight assigned to pho-
netic features is (on average) 0.69 for vowels and 0.88
for consonants (respectively, 0.31 and 0.12 for linguis-
tic features). A summary of feature weights for visual
speech is given in Table 2 for phonetic features for vow-
els. For vowels, place of articulation of the following and
preceding phonemes are the most important features in
the decreasing order of importance. The lip shape during
articulation and manner of articulation of the contextual
phonemes are also observed to be important. In the same
way, consonants, lip shape of the following phoneme, lip
shape of the preceding phoneme and place of articulation
of the preceding phoneme are observed to be the 3 most
important features in the decreasing order of importance.
At linguistic level, syllable position in a word is an im-
portant feature for vowels. We have conducted the same
study for the other constituents (Pitch, Duration, Local
speech acoustics) [14].

The analysis of these selected features is in itself an
interesting problem. The relative importance of the con-
textual features indicates that the right context is more
important than the left. This is more pronounced in pho-
netic features weights. One of the possible interpretations
of this is that the instances of anticipatory coarticulation
is higher than the instances of carryover coarticulation in
French. Word number in sentence has got eliminated for
most of the phonemes as the corpus is not sufficient to
establish any such relation. Numeric features in general
have got lower weights which show that the relative po-
sition is more important than their exact position. The
former features are size invariant. For example, ‘syllable

position in RG’ does not depend on the total number of
syllables in RG. But ‘syllable number in RG’ depends on
the total number of syllables in RG. The selected features
and their relative weights implicitly indicate the validity
of the algorithm. For example, for pitch and duration,
syllable position in RG, relative position of nearest left
and right silence, syllable position in word are shown to
be important. These features are known to be important
for explaining many of the prosodic patterns in French.

With the fifth combination with equal weights to all
the four constituents of the dissimilarity metric, the se-
lected features contain the features which are important
for all the four constituent aspects. We use these features
and their weights determined in our synthesis system. We
performed objective and human-centered evaluation for
the synthesized audio-visual speech using these feature
weights.

4. Evaluation

To evaluate our overall audio-visual speech synthesis sys-
tem, word-level perceptual intelligibility and sentence-
level subjective quality evaluation tests were conducted.
39 participants (15 females and 24 males) who are native
French speakers between 19 to 65 years of age with nor-
mal auditory and visual abilities have participated in this
experiment.

4.1. Intelligibility tests

Each human participant was presented with 50 one- or
two-syllabic French words and asked to recognize and
report the word. Some examples of the words that were
presented include {anneau (ring), bien (good), chance
(luck), pince (clip), laine (wool), cuisine(kitchen)}.
Among these words, 11 were those which are present in
the corpus (in-corpus words) which serve as a benchmark
for the best-possible performance with the given corpus.
These tests were done at two levels: (1) acoustic-only
speech, (2) audio-visual speech. In each of these cate-
gories, the acoustic speech component was degraded to
two noise levels. Hence, each word was played 4 times:
(1) acoustic-only with low noise component (SNR of -6
dB), (2) acoustic-only with high noise component (SNR
of -10 dB), (3) audio-visual with low noise (SNR -6dB),
(4) audio-visual speech with high noise (SNR of -10 dB).
The addition of noise also ensures that the listener pays
attention to the visual modality of speech. The aim is
to evaluate both visual and acoustic modalities, and also
to estimate the advantage of audio-visual speech over
acoustic-only speech. These noise thresholds were de-
cided based on the several audio-visual perceptual exper-
iments to strike a trade-off between these two objectives.
The facial animation is shown as the 3D surface of the
face using sparse mesh, which has the dynamics of facial
deformations, but without the texture and color informa-
tion [13]. Besides, the information regarding internal ar-
ticulators, teeth and tongue is also missing from the ani-



Audio Audio-Visual
L.N. | HN. | LN. | H.N.
In-Corpus 0.69 | 0.59 | 0.72 | 0.65
Out-of-Corpus | 0.40 | 034 | 045 | 0.40

Table 3: Mean intelligibility scores

Q1 Q2 | Q3 | Q4 | Q5
Overall 3.88 | 393 | 3.04 | 292 | 3.02
Out-of-Corpus | 3.76 | 3.78 | 2.57 | 2.80 | 2.65
In-Corpus 4.80 | 491 | 456 | 3.67 | 4.32

Table 4: Mean MOS scores for the five questions

mations. Table 3 shows the mean intelligibility scores of
in-corpus words and out-of-corpus words.

4.2. Subjective evaluation tests

Subjective tests were performed for the evaluation of the
synthesis quality. 20 audio-visual sentences were played,
out of which 7 sentences were real and the rest (13 sen-
tences) were synthesized sentences which correspond to
a subset of the test sentences we have for objective eval-
uation purpose. Just as in the case of intelligibility tests,
the 7 real sentences serve as the best response that is pos-
sible with the corpus utilized for synthesis which affects
various aspects of the synthesized speech like duration,
phonetic coverage and facial speech rendering technique.
For each of the stimulus, 5 questions were posed and par-
ticipants were asked to give categorical responses based
on the 5 point MOS scale (see Table 5). The first question
(Q1) represents the synchrony in the acoustic and visual
modalities. The second question (Q2) implicitly repre-
sents the prosody. Third and fourth questions (Q3 and
Q4) are representative of the naturalness of acoustic and
visual modalities respectively. The last question (Q4) is
representative of the overall speech quality and pleasant-
ness. The subjective evaluation results for in-corpus and
out-of-corpus sentences are given in Table 4. The results
to the question Q1 show that the audio-visual alignment
is good, and the acoustic prosody is acceptable (Q2 re-
sults). It has to be highlighted that the prosody was gen-
erated without using any explicit model. The naturalness
scores for voice seem to be low as shown in the Q3 re-
sults. These can be attributed to the relatively small size
of the corpus and consequently the absence of some di-
phones in the corpus. On the contrary, the naturalness
scores of facial animation (Q4 results) are high. This
shows that articulatory dynamics are being represented
well. Further, there might be a small component of the
fact that the facial representation or ‘human likeness’ is
not close to the uncanny valley and so participants are not
very critical.

Categorical
responses

QI | Does the lip movement | (5) Always— (1)
match the pronounced au- | Never

dio?
Q2 | Isthis sentence an affirma- | (5) Totally agree
tion (neutral reading)? — (1) Not at all
Q3 | Is the acoustic speech nat- | (5) Very natural

Question

ural? — (1) Not natural
Q4 | Is the facial animation nat- | (5) Very natural
ural? — (1) Not natural

Q5 | Is the pronunciation of | (5) Very pleas-
this sentence by the talk- | ant — (1) Not at
ing head pleasant? all

Table 5: Five questions and the expected categorical responses.

5. Analysis of perceptual evaluation for
better objective metrics

The per-sentence quality evaluation scores for each
sentence were compared with the objective evaluation
scored used during the system development incremen-
tally. Correlation coefficient and Root Mean Squared Er-
ror (RMSE) calculated using PCA coefficients, MFCCs
and FO were used besides the segment duration ratios as
the objective evaluation metrics. To investigate for the
perceptually important segments which affect these sub-
jective evaluation results, they were analyzed in compar-
ison with the objective evaluation metrics. The analy-
sis was based on the acoustic and visual modality. For
this purpose different phoneme sets belonging to differ-
ent categories were considered; like, all-phonemes, vow-
els, consonants, voiced phonemes, unvoiced phonemes,
visible phonemes, visible vowels, not-visible phonemes
etc. Visible phonemes are those which have identifiably
unique visible articulation, like /p/, /o/ etc. The visible
phoneme set includes those phonemes which are shown
to have good recognition based on visual features. For
test synthesized sentences; we have the real utterances,
i.e. real acoustic and visual speech realization (these
sentences are not uses in synthesis corpus). For these
sentences, the objective evaluation metrics were calcu-
lated by comparing the synthesized and real utterances
as follows. For each phoneme category, overall objective
evaluation metrics mentioned were calculated. We refer
to these metrics as consolidated metrics. As sometimes
the subjective opinions can get affected by a few bad
synthesis instances irrespective of a high overall perfor-
mance, segment-wise objective evaluation metrics men-
tioned were also calculated and the minimum (undesir-
able) of each is determined. For example, if there are
three vowels in a sentence, we keep the maximum of the
RMSE as the representative of that sentence based on this
metric (RMSE) and this phoneme category (vowel). We
refer to these metrics as worst-case-based metrics.



With these objective metrics calculated, the subjec-
tive evaluation results for Q1 (AV synchrony), Q3 (acous-
tic speech naturalness), Q4 (visual naturalness) and QS5
(pleasantness of utterance) were correlated. This was an
attempt to investigate the influential aspects which drive
the perceptual opinion about the synthesized speech. The
correlation results suggest the possibility of the following
relations. A correlation between:

e Q1 scores (synchrony) and visible-vowels. This ob-
servation is based on Q1 scores and the consolidated
correlation coefficients in visual and acoustic modal-
ity for visible-vowels.

e Q3 scores (acoustic speech naturalness) and worst-
case fO segments of voiced phonemes. This observa-
tion is based on the Q3 scores and worst-case-based fO
correlation. This is probably due to high sensitivity of
human beings to prosody.

e Q3 scores (acoustic speech naturalness) and worst-
case acoustic segments. This observation is based on
the Q3 scores and worst-case-based acoustic speech
correlation.

e Q4 scores (visual speech naturalness) and voiced
phonemes and voiced-invisible phonemes. This ob-
servation is based on the Q4 scores and the consoli-
dated visual speech correlations for voiced phonemes
and voiced-invisible phonemes. This is probably due
to human beings being critical towards coarticulation.

e QS5 scores (pleasantness of utterance) and fO. This ob-
servation is based on the Q5 scores and the worst-case-
based fO correlations for voiced phonemes. This is
probably due to human beings being critical towards
prosody.

e QS5 scores (pleasantness of utterance) and vowel and
visible-vowel durations. This observation is based on
the Q5 scores and the duration ratios for vowels and
visible-vowel duration ratios. This is probably due to
human beings being critical towards prosody.

This was a preliminary attempt to investigate for in-
formative patterns. To draw definite conclusions, more
rigorous and systematic analysis is necessary. Some ex-
pected patterns were not observed in these results. This
might be due to the lack of test cases to bring out the rela-
tion between human perception and objective evaluation
metrics.

6. Conclusion

In this paper, we presented a description of an algorithm
for weight tuning and feature elimination of target cost
function for unit selection based speech synthesis. The
main goal was to keep independent and most informative
features and tune their weights optimally. The method
is generic: it can be applied for AV synthesis, which is
our main focus, and also for acoustic-only synthesis. We

presented a summary of the selected features for differ-
ent aspects chosen to constitute the criteria for weight
tuning. We described the objective and human-centered
evaluation we performed on the synthesized speech. We
described the further analysis we did to bring out cor-
relation between the perceptual and objective evaluation
results. We enlisted interesting correlation between ob-
jective and subjective evaluation results which if further
explored can help in designing better objective evaluation
metrics. The test sentences needs to be increased dramat-
ically to bring out the correlation of human perception
and different aspects of synthesized speech. This is being
planned for future.
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