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Abstract

This paper describes an evaluation of a feature extrac-
tion method for visual speech synthesis that is suitable
for speaker-adaptive training of a Hidden Semi-Markov
Model (HSMM)-based visual speech synthesizer. An
audio-visual corpus from three speakers was recorded.
While the features used for the auditory modality are well
understood, we propose to use a standard Principal Com-
ponent Analysis (PCA) approach to extract suitable fea-
tures for training and synthesis of the visual modality. A
PCA-based approach provides dimensionality reduction
and component de-correlation on the 3D facial marker
data which was recorded using a facial motion captur-
ing system. Enabling visual average “voice” training and
speaker-adaptation brings a key strength of the HMM
framework into both the visual and the audio-visual do-
main. An objective evaluation based on reconstruction
error calculations, as well as a perceptual evaluation with
40 test subjects, show that PCA is well suited for feature
extraction from multiple speakers, even in a challenging
adaptation scenario where no data from the target speaker
is available during PCA.

1. Introduction
The features used to parametrize the acoustic speech sig-
nal for such a training-synthesis pipeline are fairly well
established. In this paper, we aim to justify the use of
standard PCA features as suitable for the visual domain.
While doing so, we pay special attention to the feasibility
of adaptive training across multiple speakers. The field
of visual speech synthesis is also well established and a
variety of approaches have been developed since the first
rule-based systems [1]. Video-based systems [2, 3] and
other data-driven approaches [4, 5] have been developed.
While especially video-based systems produce quite con-
vincing animation, they require large amounts of train-
ing data. Furthermore none of these approaches facili-
tate adaption of models between different speakers like it
is possible for speech synthesis using the HMM frame-
work. The HMM-based visual speech synthesis systems
that have been developed can be broadly categorized into

two types: image-based systems or motion capture based
systems. Image-based systems use features derived di-
rectly from the video frames [6] where the resulting syn-
thesis is supposed to look like a video of a real person.
These types of features usually require the synthesized
trajectories to be played back on the same face that was
recorded, which makes them unsuitable for multi-speaker
adaption. Motion capture based approaches [7, 8] derive
their features from individual points tracked over time.
The advantage of these types of features is that the syn-
thesized motion trajectories can be used to drive any 3D
face, which makes them highly suitable for adaptation.
However, to the best of our knowledge the adaptation of
speech data in the visual domain has not been investi-
gated, except in our own work [9], where the results now
reported in this paper where in fact already used.

Speaker-adaptive visual and joint audio-visual speech
synthesis can be applied in some video games, which can
have hundreds of different characters, each speaking only
a few lines of dialogue. Other applications for this type of
technology include multi-modal communication or any
other application which requires many different speakers
and facial models.

2. Description of Data and Usage Scenario

We have recorded three speakers reading the same
recording script in standard Austrian German to create
a synchronized audio-visual corpus. It amounts to 223
utterances and roughly 11 minutes total for each of the
speakers. For the recording of facial motion, we used
a commercially available system called OptiTrack [10]
which records the 3D position of 37 reflective markers
glued to a person’s face at 100 Hz. Figure 1 shows the
marker layout and the resulting 3D data for an example
frame of each of the three speakers. After subtracting
rigid head motion and removal of the upper and lower
eyelid markers, we have 99-dimensional (33 markers ×
3 spatial dimensions) face representations changing over
time. Using this kind of data (recorded or synthesized),
the movement of a virtual head can be controlled by
means of marker retargeting to a facial rig, a common



Figure 1: Still images from grayscale videos showing fa-
cial marker layout (top) for 3 different speakers and cor-
responding renderings of 3D marker data (bottom).

technique in animation. We have published a more de-
tailed description of this corpus before [11].

We plan to use this data for speaker-adaptive train-
ing (SAT) [12] based on constrained maximum likeli-
hood linear regression (CMLLR) [13] in an HSMM-
based speech synthesis framework [14] for visual and
audio-visual speech synthesis. For acoustic synthesis it
was shown that this method can produce voices that are
similar to a target speaker by using only a small amount
of adaptation data [15]. To employ this method in the
visual domain, we need to show that the visual feature
extraction method is usable in the adaptation setting.

Figure 2 illustrates a speaker-adaptive audio-visual
speech synthesis system. The visual feature extraction
is applied to a multi-speaker database before training,
and to a possibly different single-speaker database before
adaptation. In the synthesis step, visual parameters are
generated from the adapted models.

3. PCA-based Feature Extraction
We have already described PCA-based feature extraction
in detail in our previous paper on the data corpus [11].
To briefly summarize, the idea is to carry out a projec-
tion of the visual data into a lower-dimensional PCA-
space (making a small reconstruction error) and at the
same time to de-correlate the components. To do so, we
first subtract the sample mean column vector µs from the
data matrixMs to obtain a mean-normalized M̄s for each
speaker s ∈ AV G = {s1, s2, . . .}. Then all speakers’
normalized data is combined to one big matrix M̄AVG,
on which we compute the singular value decomposition
(SVD):

M̄AVG = U · Σ · V T

We are solely interested in the matrix U of size 99 × 99,
whose columns are the bases of the principal component
space, sorted by decreasing eigenvalues. We can project
a frame column vector x from M̄AVG into principal com-
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Figure 2: Overview of an adaptive audio-visual speech
synthesis system, which consists of four main compo-
nents: audio-visual speech analysis, average audio-visual
training, speaker adaptation, and audio-visual speech
generation.

ponent space and back using U :

x = U · (U−1 · x)

Furthermore, if Uk denotes the matrix containing only
the first k columns of U , then we can approximate this
equality:

x ≈ Uk · (U−1
k · x),

which provides a projection function to and from a k-
dimensional subspace (k < 99) in which HSMM train-
ing, adaptation and synthesis can be carried out.

The key idea regarding the speaker-adaptive scenario
is now to apply this same projection, which was deter-
mined on the data for the average voice, to project the
adaptation data from the target speaker t into the same
subspace. This assumes that we find a subspace via SVD
on the data from the (potentially large number of) speak-
ers in the average voice that is general enough to also
contain the target speaker’s data, provided that we do not
choose k too “tight”. The purpose of this paper is to jus-
tify this assumption, as well as to choose an appropriate
value for k.

Specifically, for the data we have recorded, we always
consider one of our three speakers (dsc, mpu and nke)



as the target speaker, i.e., the data to be projected (and re-
constructed, when we talk about the reconstruction error
later on) are all frames of all utterances of that speaker.
The data used for SVD, i.e., for calculating the projection
into principal component space is either

1. the data from the target speaker

2. the data from all three speakers (including the tar-
get speaker)

3. the data from the two other speakers (excluding the
target speaker).

Especially the third case is of high relevance in an adapta-
tion scenario, as the data of the target speaker is typically
not part of the training data for the average voice. Intu-
itively, we expect this to be the most challenging of the
three scenarios. But also the second case can be of prac-
tical relevance: when we want to put all available data to
optimal use, it might be beneficial to include the target
speaker in the average voice.

4. Evaluation
In order to evaluate how well the results of PCA, when
carried out the way we have described in the previous
section, do match our task of visual feature extraction,
we use both objective and subjective performance mea-
sures. The following subsection considers the objective
reconstruction error. This should bring insight to the be-
havior of the three methods mentioned in the last section,
to understanding the role of certain markers, as well as to
the influence of k, the number of kept dimensions. The
subsection after that presents the results of a subjective
evaluation we have carried out with 40 test subjects. The
main purpose of this is to provide a basis for deciding
on the value of k. We then discuss and compare the two
measures in a third subsection.

4.1. Objective Evaluation via Reconstruction Error

Given a matrix Uk containing the first k columns of a ma-
trix U resulting from SVD (as described in Section 3), we
define the reconstruction of a data matrix M , containing
a target speaker’s utterances stacked horizontally, as

M̄rec = Uk · UT
k · M̄.

Re-adding M ’s sample mean to M̄rec gives us Mrec, and
we can compute the error matrix E = M −Mrec. Let
n denote the total number of frames in all utterances of
the target speaker, i.e., M , M̄ , M̄rec, Mrec and E are all
of size 99 × n, while Uk is of size 99 × k. Finally, we
define the reconstruction error as the root mean squared
error (RMSE) across all elements eij of E:

RMSE =

√√√√ 1

99n

99∑
i=1

n∑
j=1

eij2
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Figure 3: PCA reconstruction error (RMSE) for the nine
different conditions and varying k.

We have computed the RMSE for all k ∈ {1, . . . , 99}
and for each of the nine conditions resulting from the
combination of each of our three speakers as target
speaker with one of the three methods to compute the
SVD as described in Section 3. The results are shown in
Figure 3. The points are labeled with the target speaker
before the period and all speakers that were used in the
SVD after the period.

Overall, we see our intuition confirmed: using only 6
of 99 dimensions yields an RMSE of less than 1mm in
all nine conditions. The three speaker-specific versions
produce the best results, as expected. Their RMSEs lie
even below 0.5mm at k = 6. The three versions with
all speakers in the SVD are a bit worse than that, and
as expected the three held-out versions yield the worst
results. It takes 35 dimensions for the particularly bad
nke.dsc+mpu to reach an RMSE below 0.5mm.

Although the methods of the third kind produce a
larger reconstruction error than the others, they still show
the same overall behavior (shape of the curves in Fig. 3),
namely that the first few dimensions make a very big dif-
ference in the results, and that the error levels off towards
the larger values of k. This means that we have the posi-
tive result that it is possible to project some speaker’s data
into a much smaller subspace, where the definition of the
subspace and the projection into it were determined with-
out using any data from that speaker, without making a
large reconstruction error, given that we do not choose
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Figure 4: PCA reconstruction error (RMSE) for each
marker and SVD method, averaged across all target
speakers and 3D coordinates, at k = 6.

the value of k too aggressively. We would also expect
the results to improve once we have data from a larger
number of speakers available.

Rather than taking the mean across the entire error
matrix E, we can also look at the means of each row,
which corresponds to the mean error for a certain coor-
dinate of a certain marker. Fig. 4 shows the RMSE for
each marker and each of the three methods. The plotted
values are means across all target speakers, 3D coordi-
nates and of course frames, for a fixed value of k = 6.
We can see that the markers in the region of the mouth
(*Lip*, *Mouth*, *Jaw*) are responsible for the largest
errors. Also, we see again how the third method (held-
out) is consistently worse than the second (all speakers),
which is in turn consistently worse than the first (speaker-
specific).

4.2. Subjective Evaluation via Perceptive Experi-
ments

Based on the objective evaluation alone, it would be dif-
ficult to choose a value for k to proceed to actual train-
ing and synthesis. It is not clear a priori what an RMSE
of, e.g., 1mm means perceptually, or in other words it is
not clear how small we can choose k without perceived
degradation in quality. To clarify this, we have carried out
a subjective perceptual experiment with 40 non-expert
test subjects (half females and half males, aged 20–68

Table 1: Partitioning of the values for k for target speaker
nke

bin method 1 method 2 method 3
1 1 1 1
2 2 2 2–3
3 3 3 4–5
4 4 4–5 6–8
5 5–6 6–7 9–11
6 7–8 8–9 12–14
7 9–10 10–11 15–17
8 11–12 12–14 18–21
9 13–15 15–17 22–25
10 16–18 18–20 26–29
11 19–21 21–24 30–33
12 22–25 25–28 34–38
13 26–29 29–33 39–43
14 30–34 34–38 44–49
15 35–40 39–44 50–55
16 41–47 45–52 56–62
17 48–56 53–62 63–70
18 57–70 63–78 71–80
19 71–99 79–99 81–99
20 99 99 99

years). This experiment was designed as follows.
We have created videos of marker renderings, where

for each frame of an utterance, a white cube is drawn on
a black background for each of the 33 markers at the 3D
position of that marker in that frame1. This leads to ren-
derings that look similar to the lower part of Fig. 1. Note
that we deliberately chose not to apply the marker mo-
tion to a virtual head and use renderings of the animated
head in the evaluation, because we wanted to make sure
the quality (or lack of quality) of the retargeting or the
visual appearance of the head do not skew the evaluation
results.

In each video, we showed a rendering of the origi-
nally recorded data side by side with a rendering of a
reconstruction using a certain value of k. Then the test
subjects were asked to decide whether the two render-
ings were different or the same from their point of view.
Whether the original was on the left or on the right was
chosen randomly for each video. We used the first five
sentences of our corpus as test sentences, and each test
subject saw one comparison for each test sentence and
each of the nine conditions (Fig. 3), i.e., 45 comparisons
in total. We have selected values of k with respect to the
reconstruction error: For each of the nine conditions, we
have partitioned the set of 99 possible values for k into
19 bins, where each bin amounts for a similar percent-
age of the overall error. We also added a twentieth bin
containing only the last value (k = 99). We then se-
lected the middle value of each bin as that bin’s represen-
tative. Each test subject saw at least one comparison from
each bin, with the remaining comparisons distributed ran-
domly. Table 1 shows for target speaker nke which values
of k belonged to which of the 20 bins in each of the three
methods.

1Examples on http://userver.ftw.at/~schabus/avsp2013fe/examples.mov
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Figure 5: Results of the subjective evaluation: Percentage
of “different” votes per bin (top) and per bin and method
(bottom).

This leads to a denser sampling in the lower region,
where one additional dimension makes a big difference,
and a sparser sampling in the higher region, where one
additional dimension makes a small difference. The en-
tire evaluation thus amounts to 900 comparisons (9 meth-
ods × 5 sentences × 20 bins), for each of which we have
two votes from two different subjects. Therefore the re-
sults contain 1800 votes total.

The results are shown in Fig. 5, where we have plotted
the percentage of “different” votes for each of the 20 bins
(top), and the same data additionally separated by method
(bottom). We see that the general picture is in agreement
with what we know from the objective error, namely that
reconstructions with low values of k (left side of Fig. 5)
are perceived as being mostly different from the original,
that small changes to k have a shrinking influence with
growing k, and that the difference levels off towards the
upper end of the scale (right side of Fig. 5).

However, the actual values of the evaluation at the
extreme points are somewhat surprising: The reconstruc-
tions corresponding to the first bin are very poor in terms
of the objective error and should look clearly different
from the original, yet in 13 of the 90 comparisons (14%)
they were perceived as being equal by the test subjects.
Similarly, at the other end of the scale, the reconstructions
with k = 99 in bin 20 are per definition error-free, as the
projection into principal component space and back are
mere rotations of the coordinate system.2 Nevertheless,

2The actual RMSE in our implementation was always < 10−15

Table 2: Significant differences in perception: Results of
paired Wilcoxon signed rank tests between votes for each
bin, with (�) and without Bonferroni correction (�).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 � � � � � � � � � � � � � � � � � � �
2 � � � � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � � � � �
4 � � � � � � � � � � � � �
5 � � � � � � �
6 � � � � � � � �
7 � � � � � � � � �
8 � � � �
9 � � � �
10 � � � �
11 � � � � � � �
12 � � � �
13 � � � �
14 � � � �
15 � � � � � �
16 � � � � � � � � � �
17 � � � � �
18 � � � � � � � �
19 � � � � � � � �
20 � � � � � � � �

in 21 out of 90 cases (23%) they were judged as being
different from the original.

We believe some of this uncertainty in the results can
be ascribed to the difficulty of the task. Even if the marker
motion is quite different from the original for low val-
ues of k, the overall appearance of the two renderings is
very similar. Furthermore, the sequence of comparison
examples is quite uniform, which could lead to effects of
boredom.

This uncertainty also makes it difficult to compare the
three methods to each other based on the subjective data.
The bottom part of Fig. 5 illustrates that the data does not
allow for drawing clear conclusions in this regard.

To assess the statistical significance of the differences
between the bins’ results, we have computed Bonferroni-
corrected paired Wilcoxon signed rank tests between the
votes of each pair of bins. The pairing of votes was based
on the method and utterance only, i.e., we ignored which
test subject cast a particular vote. The results are shown
in Table 2, where the symbol � indicates a significant
difference (α = 0.05). In this rather restrictive setting
(due to Bonferroni correction the value of α for each of
the 190 tests is 0.05/190 ≈ 0.00026), only the first four
bins show significant differences from some of the other
bins, i.e., none of the bins from 5 to 20 differ significantly
from each other.

This result tells us that we need to choose k from a
bin ≥ 4 at the very least, and it even suggests that choos-
ing from bin number 4 is sufficient, since larger values do
not lead to significantly better results anyway. However,
the conservativeness of Bonferroni correction would act
in our advantage here, because it reduces the probabil-
ity of false positives (type I error) at the cost of an in-
creased probability of false negatives (type II error). We
should not choose k too small because of some signifi-



cant differences that were missed due to the Bonferroni
correction. Therefore, Table 2 also shows the additional
significances of the same test without Bonferroni correc-
tion, indicated by the symbol �. This result is quite likely
to contain some false positives, but there is nevertheless
the set of bins {12, ..., 20} where there are no signifi-
cant differences. Therefore, by selecting the smallest k
larger than any k from bin 11 we still make a conserva-
tive choice. However, the final k = 33 still accounts for a
great reduction in dimensionality: Two thirds of the ini-
tial 99 degrees of freedom could be removed.

4.3. Discussion

Overall, both the objective and the subjective evaluation
have provided results in general agreement with the ex-
pectations. With growing k, the results improve quickly
at first, and finally level off – towards zero in the objec-
tive case and towards “background noise” of uncertainty
in the subjective case. The reconstruction error evaluation
clearly showed the difference in performance between the
three methods, something which the subjective method
failed to show. However, the user votes provide an excel-
lent basis for selecting an actual value for k that defines
the number of dimensions employed in both training and
synthesis.

5. Conclusion

We have shown that a PCA-based feature extraction algo-
rithm in the visual domain is suitable for speaker-adaptive
training. Overall we can conclude that it is feasible to
project some speaker’s data into a much smaller sub-
space, where the definition of the subspace and the pro-
jection into it were determined without using any data
from that speaker. This opens up the possibility of not
only using speaker-adaptive training in the auditory do-
main but also extend it to the visual and joint audio-visual
domains. With this approach we are able to adapt an av-
erage visual model to a specific speaker by using only
a small amount of visual adaptation data, cutting down
the time and effort required to produce a speech motion
model for that new speaker.

For visual-only speech synthesis, we have already
shown that the adaptive approach can be superior to
speaker-dependent modeling, at least for small amounts
of target speaker data [9]. We plan to extend this to
joint audio-visual speaker-adaptive modeling in the fu-
ture. Furthermore, we have worked on language varieties
(dialects/sociolects) in the acoustic domain in the past,
and we would like to extend some of these results to the
visual modality.
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