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Abstract

We present a method for transforming neutral visual
speech sequences into realistic expressive visual speech
sequences. By applying Independent Component Analy-
sis (ICA) to visual features extracted from time aligned
neutral and equivalent expressive sequences, a model
that separates speech from expression can be learned.
Analyzing the behavior of different speaking styles in
terms of this model provides both a means for identify-
ing the component(s) responsible for expression, and for
learning the correspondence between different speaking
styles. Exploiting this correspondence to transform neu-
tral visual speech into expressive visual speech creates
sequences that have the same time varying expressive dy-
namics as the equivalent ground-truth sequences, and an
objective analysis shows that the neutral ICA parameters
are shifted into the appropriate ranges for expressive vi-
sual speech.
Index Terms: expressive visual speech synthesis, inde-
pendent component analysis, expressive style transfor-
mation

1. Introduction

Facial animation is employed extensively in computer
games and in animated movies, but generating accept-
able expressive speech animation remains a challenge.
To ensure the highest quality animated sequences, anima-
tion studios usually resort either to using artists to hand-
craft animated sequences or use motion capture. Both
of these approaches are expensive and time-consuming,
whilst the latter makes it difficult to edit captured content
subsequently. Automation of speech animation has been
the focus of much research (see [1, 2] for an overview)
and some approaches have reported highly realistic re-
sults [3, 4]. Despite this there has been limited, if any,
adoption of these techniques by the animation industry.
This is partly because the methods focus only on speech
generation, and do not consider other communicative fac-
tors that are important, such as facial expressions and how
these expressions interact with the accompanying facial
movements due to speech.

In this paper, we describe a method for retargeting
recorded neutral speech into the equivalent expressive
speech using only a small training set of expressive sen-

tences. Key to this is the idea of decomposing an expres-
sive speech sequence into independent expressive and
speech components [5, 6, 7]. Factorizing these compo-
nents makes it possible to learn the relationship between
neutral visual speech and expressive visual speech, and
thus given a new sequence of neutral visual speech, ex-
pression can be added and manipulated (largely) indepen-
dently of the speech content.

2. Related Work

Early approaches for expressive facial animation mod-
eled the face using a geometric mesh, which was an-
imated using either pseudo-muscle models embedded
within the mesh [8] or a more complete physically-based
approach [9]. Sifakis et al. [10] implemented a more
complex and realistic muscle simulation based on tetra-
hedral meshes constructed using MRI and laser scanned
data. Muscle activations corresponding to facial expres-
sion were then solved for using an inverse muscle ac-
tivation algorithm. Muscle activations for expressions
can be blended with activations for mouth shapes to pro-
duce expressive speech animation. However, these ex-
pressive activations are static, so the resultant animations
lack dynamic subtlty. Furthermore, these more compli-
cated models are increasingly computationally expensive
and become more difficult to interact with.

More recently, statistical approaches have been ap-
plied to expressive video sequences [7, 11] or to mo-
tion capture data [12, 5, 13] in an attempt to parame-
terize speech and facial expression. Such approaches
include bilinear [7, 11] and trilinear models [12], both
of which factorize expressive speech into separate com-
ponents so that parameterized neutral speech sequences
can be modulated with expression parameters. Alterna-
tively, independent component analysis (ICA) [14] pro-
vides a different approach based on the idea of an ex-
pressive speech signal being an additive mix of indepen-
dent expression and speech signals [5, 13]. A mapping is
learned between different emotional styles in ICA space
by training a model on sequences containing two differ-
ent styles (e.g. happy and sad). One ICA component (or
mode) is then responsible for the facial movements as-
sociated with expression, whilst the rest are responsible
for speech. By manipulating the expressive mode for



novel sequences, the corresponding facial expression can
be switched between the two expressions on which the
model was trained.

Inspired by [5, 13] we propose an approach for us-
ing ICA to separate speech and expression in expres-
sive speech sequences. However, rather than requiring a
model for each pair of facial expressions, we instead pro-
pose an approach that requires only a single model per
expression.

3. Data Pre-processing

All work described in this paper was conducted using
the B3D(AC)2 corpus [15]. The data consists of 3D fa-
cial laser scans at 25Hz, of six males and eight females
each speaking 80 sentences. Each sentence is said once
in a neutral style and once as an expressive equivalent.
A phonetic annotation of the sentences is provided with
the corpus. The mesh for a single frame is represented
as x = {x0, y0, z0, x1, y1, z1, . . . , xn�1, yn�1, zn�1}T ,
where n = 23, 370. The scanned data are provided in
vertex correspondence with a triangulation for surface
rendering. A more compact model that allows for linear
variation in the deformation of the mesh is given by:

x = x+Pb, (1)

where the coefficients b are shape parameters used to
encode the high-dimensional mesh. Such a model can
be computed by applying principal component analysis
(PCA) to a training set of meshes, so x is the mean shape
and the columns of P are the eigenvectors corresponding
to the largest eigenvalues. The highly structured varia-
tion in the vertex locations means that each frame can be
represented as a five-element vector, where five principal
components account for 85% of the total variation in the
original 70,110 dimensional space.

3.1. Independent Component Analysis

The time-varying principal component values, b in Equa-
tion 1, encode changes in position of the facial features
due to both speech and expression. An underlying as-
sumption is that this is a mixed signal composed of two
independent signals, a speech and an expression signal,
which are combined in an additive manner. This can be
modelled as:

b = As, (2)

where s represents the unknown source (speech and ex-
pression) signals and A is a matrix of unknown mixing
coefficients. ICA provides a framework for estimating
the mixing matrix such that the independent components
can be computed using:

s = Wb. (3)

where W is the pseudo-inverse of A, and is calculated to
maximize differential entropy and minimize mutual in-
formation of the random vector b [16].

In this work we use the publicly available FastICA
algorithm [17] to calculate A and W. To identify the in-
dependent components each utterance was projected onto
the principal components using:

b = P

T
(x� x) . (4)

Next, the neutral utterances and the equivalent expressive
sequences of a particular style (happy, sad, etc.) were
time aligned using dynamic time warping (DTW). The
number of ICA components retained by FastICA was
made equal to the same number of PCA components to
avoid any data loss.

4. Transforming Neutral Speech into

Expressive Speech

When transforming parameters that encode neutral vi-
sual speech into those which encode expressive visual
speech, the dynamics of the expression must appear nat-
ural and the mouth movements corresponding to speech
must remain valid. If all of the assumptions of ICA held,
some of the independent components would correspond
exactly to speech and some exactly to expression. How-
ever, we have found that a ‘clean’ separation of the sig-
nals does not occur, and each component tends to repre-
sent both speech and expression movements to varying
degrees. This was verified by setting all values in ev-
ery ICA mode except one to zero then reconstructing the
mesh, thus showing the influence of only one ICA mode.
An additional problem is that there is no ordering of the
components returned by ICA, so there is no obvious ob-
jective way to discriminate between those components
which predominantly represent speech and those which
predominantly represent expression.

Although no component is fully responsible for ex-
pression, the distribution of the energy in the components
is different for neutral speech and expressive speech. Fig-
ure 1 shows what we refer to as the energy signatures
for neutral and expressive speech. The black bars in the
Figure represent the energy in the components, computed
using:
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Figure 1: The energy (black) and amplitude (red) in the
ICA components of (A) four neutral speech sequences
and (B) the equivalent four expressive speech sequences.

The main differences between the neutral and expres-
sive energy signatures is that one component tends to be
negative for neutral speech, whereas it tends to be positive
for expressive speech (in this case component 1). Another
difference is that a component tends to have more overall
energy in expressive speech than in neutral speech (in this
case component 4). The task then is to compute the ICA
components for a novel neutral speech sequence and then
redistribute the energy in these components so that they
better match those observed in expressive speech. This
involves rescaling the values of the components and (pos-
sibly) changing the sign. The weights used to transform
the neutral speech components are computed using:
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where w

j is the scaling for the j

th component, eje is the
energy in the jth component of expressive speech and e

j
n

the energy in the j

th component of neutral speech. Thus,

given a sequence of novel neutral speech projected into
ICA space, the parameter values are adjusted according
to:
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where µj is the mean value of the jth component over the
novel utterance, and sgn is +1 if the amplitude is positive
and �1 if the amplitude is negative. The value u

j
(t) rep-

resents the new value of the j

th independent component
at time t.

5. Results

Five sequences from the B3D(AC)2 corpus were chosen
for each expressive style and paired with their equivalent
neutral speech. To maximize the limited data available
leave-one-out training was used, where five ICA mod-
els for an expressive style were trained using four of the
sequence pairs, with a fifth sequence held-out for test-
ing. Figure 2 shows example time-varying trajectories in
three of the five independent components for ground truth
expressive, ground-truth neutral and the corresponding
transformed neutral visual speech. Note that the trans-
form is not attempting to recreate the expressive sequence
exactly, rather the style of the expressive speech is being
imposed onto the content of the neutral speech.

Sequences transformed from neutral to expressive
styles using the process described in Section 4, not only
show the correct change in facial expression, but also dis-
play the dynamics which are seen in the training set be-
cause real ICA data is being scaled rather than a style
being statically imposed. Sample frames from video se-
quences containing real neutral speech, the same speech
after transforming to an expressive style, and the corre-
sponding real expressive sequences time-aligned to the
neutral sequence are shown in Figure 3.

6. Evaluation

A small subjective evaluation involved a forced choice
Turing test, where 14 viewers were each shown 8 se-
quence pairs (n=112 samples). Sequences of time aligned
real and transformed expressive speech were shown as
visual only to ensure that acoustic artefacts due to time
aligning the sequences had no influence on the results.
The left-right ordering of the pair was randomized and
viewers were asked to identify the real sequence in the
pair. Of the 112 samples, 43 of the responses were cor-
rect. Using a binomial significance test we find that view-
ers cannot reliably identify the real sequences from the
transformed sequences (p > 0.3). In several cases, view-
ers stated that they found it difficult to choose between se-
quences in terms of realism, and so therefore chose their
favorite. Responses tended to be biased in favor of trans-
formed sequences being identified as real — so we ob-



Figure 2: Time-varying independent components for a
ground-truth neutral sequence (green dashed curve), the
time aligned expressive equivalent sequence spoken in a
happy style (red dotted curve), and the neutral sequence
transformed into a happy style (black solid curve). In
particular, note how component one has been shifted into
the correct range for expressive speech, but still displays
a similar shape to the ground truth neutral speech. Also,
the bars in Figure 1 suggest that component four should
have greater amplitude after transformation.

serve more false positives than false negatives. This is
perhaps explained by the fact that transformed sequences
tend to be slightly attenuated and thus smoother than the
corresponding ground truth data.

7. Summary

We have described a method for transforming sequences
of neutral visual speech into expressive visual speech.
Independent component analysis is used to decompose
time aligned neutral and expressive visual speech, and
weights are learned to distribute the energy in the inde-
pendent components of (novel) neutral speech to better
match the energy observed in expressive visual speech.
This transformation results in expressive utterances that
appear to display the same kinds of expression as seen in
the expressive training set, and importantly the integrity
of mouth shapes remains intact. Our approach uses ICA
to separate neutral from expressive speech, unlike pre-
vious attempts which are trained to separate expressive
data of different types (e.g. happy from sad). The advan-
tage of this is that the number of models grows linearly
as we train for new expressions, whereas separating dif-
ferent expression types requires a model for each pair of
expressions. This technique is flexible in that it allows
any arbitrary neutral visual speech to be transformed into
an expressive style using only a small training set of ex-
pressive and neutral speech.

Future work will focus on extending this work to rep-
resent multiple expressions in a single model to firstly
reduce the number of models required for representing
a broad set of expressions, and secondly to investigate
how new expressions can be generated as combinations
of existing expressions. We will also work on incor-
porating this technique into an expressive visual speech
synthesizer. To date we have only applied the method
to transform real neutral visual speech into the equiva-
lent expressive visual speech. A neutral visual speech
synthesiser can be trained from a large corpus of neu-
tral visual speech, which would be able to produce realis-
tic neutral synthesised visual speech. The technique pre-
sented in this paper could then be used to transform this
synthesized neutral visual speech into expressive visual
speech using only a few expressive training sequences.
The advantage of this is that the neutral speech is rela-
tively easy to capture (compared with expressive speech),
and it avoids the need to capture a full corpus of speech
for each expressive style.
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